Qadeer Raza , Shuke Li , Xiaodong Wang , Bagh Ali , Nehad Ali Shah
{"title":"热辐射作用下Boger纳米流体形态效应及纳米层导热系数的有限元分析","authors":"Qadeer Raza , Shuke Li , Xiaodong Wang , Bagh Ali , Nehad Ali Shah","doi":"10.1016/j.chaos.2025.116644","DOIUrl":null,"url":null,"abstract":"<div><div>This study focuses on the two-dimensional magnetohydrodynamic Darcy–Forchheimer flow of a Boger nanofluid over a stretching sheet, incorporating multiple enhancements in the diameter-based viscosity and thermal conductivity models. The heat transfer analysis considers the effects of thermal radiation, viscous dissipation, and Joule heating. To account for nanoparticle geometry, non-spherical thermal conductivity and diameter-based viscosity models are applied based on various shapes and size factor of copper nanoparticles. The influence of metallic nanoparticle morphology on heat transfer performance is analyzed through nanofluid flow simulations. The governing nonlinear partial differential equations are converted into dimensionless form using appropriate similarity variables, with the pressure term eliminated via the penalty method. The resulting dimensionless equations are solved using the finite element method (FEM), and all simulations are performed in MATLAB. The impact of various parameters on the velocity and temperature profiles reveals distinct behaviors across the three viscosity and thermal conductivity models. An increase in the solvent fraction parameter enhances the velocity profile, with the third diameter-based viscosity model demonstrating optimal flow behavior at smaller nanoparticle diameters. Conversely, higher Forchheimer numbers suppress the velocity profile, with the second diameter-based viscosity model showing the most significant reduction at larger diameter values. Larger copper nanoparticle diameters and higher shape factors enhance heat transfer in the temperature profile for the non-spherical thermal conductivity model, with platelet-shaped nanoparticles exhibiting the best thermal performance.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116644"},"PeriodicalIF":5.6000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite element analysis of morphological effects and nanolayer thermal conductivity in Boger nanofluids under thermal radiation\",\"authors\":\"Qadeer Raza , Shuke Li , Xiaodong Wang , Bagh Ali , Nehad Ali Shah\",\"doi\":\"10.1016/j.chaos.2025.116644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study focuses on the two-dimensional magnetohydrodynamic Darcy–Forchheimer flow of a Boger nanofluid over a stretching sheet, incorporating multiple enhancements in the diameter-based viscosity and thermal conductivity models. The heat transfer analysis considers the effects of thermal radiation, viscous dissipation, and Joule heating. To account for nanoparticle geometry, non-spherical thermal conductivity and diameter-based viscosity models are applied based on various shapes and size factor of copper nanoparticles. The influence of metallic nanoparticle morphology on heat transfer performance is analyzed through nanofluid flow simulations. The governing nonlinear partial differential equations are converted into dimensionless form using appropriate similarity variables, with the pressure term eliminated via the penalty method. The resulting dimensionless equations are solved using the finite element method (FEM), and all simulations are performed in MATLAB. The impact of various parameters on the velocity and temperature profiles reveals distinct behaviors across the three viscosity and thermal conductivity models. An increase in the solvent fraction parameter enhances the velocity profile, with the third diameter-based viscosity model demonstrating optimal flow behavior at smaller nanoparticle diameters. Conversely, higher Forchheimer numbers suppress the velocity profile, with the second diameter-based viscosity model showing the most significant reduction at larger diameter values. Larger copper nanoparticle diameters and higher shape factors enhance heat transfer in the temperature profile for the non-spherical thermal conductivity model, with platelet-shaped nanoparticles exhibiting the best thermal performance.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"199 \",\"pages\":\"Article 116644\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925006575\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925006575","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Finite element analysis of morphological effects and nanolayer thermal conductivity in Boger nanofluids under thermal radiation
This study focuses on the two-dimensional magnetohydrodynamic Darcy–Forchheimer flow of a Boger nanofluid over a stretching sheet, incorporating multiple enhancements in the diameter-based viscosity and thermal conductivity models. The heat transfer analysis considers the effects of thermal radiation, viscous dissipation, and Joule heating. To account for nanoparticle geometry, non-spherical thermal conductivity and diameter-based viscosity models are applied based on various shapes and size factor of copper nanoparticles. The influence of metallic nanoparticle morphology on heat transfer performance is analyzed through nanofluid flow simulations. The governing nonlinear partial differential equations are converted into dimensionless form using appropriate similarity variables, with the pressure term eliminated via the penalty method. The resulting dimensionless equations are solved using the finite element method (FEM), and all simulations are performed in MATLAB. The impact of various parameters on the velocity and temperature profiles reveals distinct behaviors across the three viscosity and thermal conductivity models. An increase in the solvent fraction parameter enhances the velocity profile, with the third diameter-based viscosity model demonstrating optimal flow behavior at smaller nanoparticle diameters. Conversely, higher Forchheimer numbers suppress the velocity profile, with the second diameter-based viscosity model showing the most significant reduction at larger diameter values. Larger copper nanoparticle diameters and higher shape factors enhance heat transfer in the temperature profile for the non-spherical thermal conductivity model, with platelet-shaped nanoparticles exhibiting the best thermal performance.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.