{"title":"熵、焓和进化:蛋白质结合热力学中的适应性权衡","authors":"Rosemary Georgelin , Colin J. Jackson","doi":"10.1016/j.sbi.2025.103080","DOIUrl":null,"url":null,"abstract":"<div><div>Proteins are central to biological complexity as their ligand binding processes, shaped by thermodynamics, have driven evolutionary adaptation throughout Earth’s history. Despite extensive research into protein–ligand interactions, the evolution of their binding thermodynamics, particularly regarding enthalpy–entropy trade-offs, remains underexplored. This review compares experimental and computational findings to illustrate how the balance of thermodynamics influences protein structure and function over time. We hypothesize that ancient proteins likely exhibit entropically favored, flexible binding modes, while modern proteins increasingly rely on enthalpically driven specificity. Evolutionary trajectories, including those from ancestral sequence reconstruction studies and modern viral evolution, reveal that thermodynamic trade-offs allow proteins to adapt to diverse functions. Our evolutionary perspective on the existing research demonstrates that binding thermodynamics not only govern ligand affinity and specificity but also fundamentally shape protein evolution and inform potential protein engineering strategies.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"94 ","pages":"Article 103080"},"PeriodicalIF":6.1000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy, enthalpy, and evolution: Adaptive trade-offs in protein binding thermodynamics\",\"authors\":\"Rosemary Georgelin , Colin J. Jackson\",\"doi\":\"10.1016/j.sbi.2025.103080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Proteins are central to biological complexity as their ligand binding processes, shaped by thermodynamics, have driven evolutionary adaptation throughout Earth’s history. Despite extensive research into protein–ligand interactions, the evolution of their binding thermodynamics, particularly regarding enthalpy–entropy trade-offs, remains underexplored. This review compares experimental and computational findings to illustrate how the balance of thermodynamics influences protein structure and function over time. We hypothesize that ancient proteins likely exhibit entropically favored, flexible binding modes, while modern proteins increasingly rely on enthalpically driven specificity. Evolutionary trajectories, including those from ancestral sequence reconstruction studies and modern viral evolution, reveal that thermodynamic trade-offs allow proteins to adapt to diverse functions. Our evolutionary perspective on the existing research demonstrates that binding thermodynamics not only govern ligand affinity and specificity but also fundamentally shape protein evolution and inform potential protein engineering strategies.</div></div>\",\"PeriodicalId\":10887,\"journal\":{\"name\":\"Current opinion in structural biology\",\"volume\":\"94 \",\"pages\":\"Article 103080\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959440X25000983\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25000983","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Entropy, enthalpy, and evolution: Adaptive trade-offs in protein binding thermodynamics
Proteins are central to biological complexity as their ligand binding processes, shaped by thermodynamics, have driven evolutionary adaptation throughout Earth’s history. Despite extensive research into protein–ligand interactions, the evolution of their binding thermodynamics, particularly regarding enthalpy–entropy trade-offs, remains underexplored. This review compares experimental and computational findings to illustrate how the balance of thermodynamics influences protein structure and function over time. We hypothesize that ancient proteins likely exhibit entropically favored, flexible binding modes, while modern proteins increasingly rely on enthalpically driven specificity. Evolutionary trajectories, including those from ancestral sequence reconstruction studies and modern viral evolution, reveal that thermodynamic trade-offs allow proteins to adapt to diverse functions. Our evolutionary perspective on the existing research demonstrates that binding thermodynamics not only govern ligand affinity and specificity but also fundamentally shape protein evolution and inform potential protein engineering strategies.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation