基于多尺度时空变换的多步城市交通流预测

IF 8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Shenkai Zhang , Taiyong Li , Yingqi Chen , Jiang Wu , Xiao Yan
{"title":"基于多尺度时空变换的多步城市交通流预测","authors":"Shenkai Zhang ,&nbsp;Taiyong Li ,&nbsp;Yingqi Chen ,&nbsp;Jiang Wu ,&nbsp;Xiao Yan","doi":"10.1016/j.engappai.2025.111362","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate citywide traffic flow forecasting is an essential task in intelligent transportation systems. Unlike single-step forecasting, multi-step traffic flow forecasting offers extended insights that support proactive traffic management and resource allocation over longer time horizons. This paper proposes a Multi-Step Multiscale Spatial–Temporal Transformer (MS-MSTformer) for citywide traffic flow forecasting, which leverages a multiscale patch mechanism to capture both local and global spatial dependencies while integrating temporal patterns of closeness, period, and trend. Two novel cross-attention modules, namely Patch-Temporal Cross-Attention (PTCA) and Region-Temporal Cross-Attention (RTCA) are presented. These modules utilize temporal information as the query, with PTCA and RTCA focusing on patches and regions, respectively, to effectively fuse diverse spatio-temporal features. Extensive experiments on the widely used New York City Taxi (NYCTaxi) and New York City Bike (NYCBike) datasets demonstrate the MS-MSTformer’s capability to provide accurate multi-step citywide traffic flow forecasting. Specifically, the proposed model outperforms the baseline models in 11 out of 12 evaluation scenarios. On average, MS-MSTformer improves Root Mean Square Error (RMSE) by 31.13% and Mean Absolute Error (MAE) by 29.22% over the deep learning baselines. In addition, the ablation study demonstrates the contributions of both PTCA and RTCA to the proposed MS-MSTformer.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"158 ","pages":"Article 111362"},"PeriodicalIF":8.0000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-step citywide traffic flow forecasting based on multiscale spatio-temporal transformer\",\"authors\":\"Shenkai Zhang ,&nbsp;Taiyong Li ,&nbsp;Yingqi Chen ,&nbsp;Jiang Wu ,&nbsp;Xiao Yan\",\"doi\":\"10.1016/j.engappai.2025.111362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate citywide traffic flow forecasting is an essential task in intelligent transportation systems. Unlike single-step forecasting, multi-step traffic flow forecasting offers extended insights that support proactive traffic management and resource allocation over longer time horizons. This paper proposes a Multi-Step Multiscale Spatial–Temporal Transformer (MS-MSTformer) for citywide traffic flow forecasting, which leverages a multiscale patch mechanism to capture both local and global spatial dependencies while integrating temporal patterns of closeness, period, and trend. Two novel cross-attention modules, namely Patch-Temporal Cross-Attention (PTCA) and Region-Temporal Cross-Attention (RTCA) are presented. These modules utilize temporal information as the query, with PTCA and RTCA focusing on patches and regions, respectively, to effectively fuse diverse spatio-temporal features. Extensive experiments on the widely used New York City Taxi (NYCTaxi) and New York City Bike (NYCBike) datasets demonstrate the MS-MSTformer’s capability to provide accurate multi-step citywide traffic flow forecasting. Specifically, the proposed model outperforms the baseline models in 11 out of 12 evaluation scenarios. On average, MS-MSTformer improves Root Mean Square Error (RMSE) by 31.13% and Mean Absolute Error (MAE) by 29.22% over the deep learning baselines. In addition, the ablation study demonstrates the contributions of both PTCA and RTCA to the proposed MS-MSTformer.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"158 \",\"pages\":\"Article 111362\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197625013648\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625013648","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

准确的城市交通流预测是智能交通系统的一项重要任务。与单步预测不同,多步交通流量预测提供了扩展的见解,支持更长期的主动交通管理和资源分配。本文提出了一种用于城市交通流量预测的多步多尺度时空转换器(MS-MSTformer),它利用多尺度补丁机制捕捉局部和全球空间依赖关系,同时整合了接近度、周期和趋势的时间模式。提出了两个新的交叉注意模块,即斑块-时间交叉注意(PTCA)和区域-时间交叉注意(RTCA)。这些模块利用时间信息作为查询,PTCA和RTCA分别聚焦于斑块和区域,有效融合了不同的时空特征。在广泛使用的纽约市出租车(NYCTaxi)和纽约市自行车(NYCBike)数据集上进行的大量实验表明,MS-MSTformer能够提供准确的多步城市交通流量预测。具体来说,在12个评估场景中的11个中,建议的模型优于基线模型。与深度学习基线相比,MS-MSTformer平均提高了均方根误差(RMSE) 31.13%,平均绝对误差(MAE) 29.22%。此外,烧蚀研究证明了PTCA和RTCA对所提出的MS-MSTformer的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-step citywide traffic flow forecasting based on multiscale spatio-temporal transformer
Accurate citywide traffic flow forecasting is an essential task in intelligent transportation systems. Unlike single-step forecasting, multi-step traffic flow forecasting offers extended insights that support proactive traffic management and resource allocation over longer time horizons. This paper proposes a Multi-Step Multiscale Spatial–Temporal Transformer (MS-MSTformer) for citywide traffic flow forecasting, which leverages a multiscale patch mechanism to capture both local and global spatial dependencies while integrating temporal patterns of closeness, period, and trend. Two novel cross-attention modules, namely Patch-Temporal Cross-Attention (PTCA) and Region-Temporal Cross-Attention (RTCA) are presented. These modules utilize temporal information as the query, with PTCA and RTCA focusing on patches and regions, respectively, to effectively fuse diverse spatio-temporal features. Extensive experiments on the widely used New York City Taxi (NYCTaxi) and New York City Bike (NYCBike) datasets demonstrate the MS-MSTformer’s capability to provide accurate multi-step citywide traffic flow forecasting. Specifically, the proposed model outperforms the baseline models in 11 out of 12 evaluation scenarios. On average, MS-MSTformer improves Root Mean Square Error (RMSE) by 31.13% and Mean Absolute Error (MAE) by 29.22% over the deep learning baselines. In addition, the ablation study demonstrates the contributions of both PTCA and RTCA to the proposed MS-MSTformer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信