Zahoor Ahmad , Mahmood Alzubaidi , Khaled Al-Thelaya , Corrado Calí , Sabri Boughorbel , Jens Schneider , Marco Agus
{"title":"在数字病理学中推进开源可视化分析:对工具、趋势和临床应用的系统回顾","authors":"Zahoor Ahmad , Mahmood Alzubaidi , Khaled Al-Thelaya , Corrado Calí , Sabri Boughorbel , Jens Schneider , Marco Agus","doi":"10.1016/j.jpi.2025.100454","DOIUrl":null,"url":null,"abstract":"<div><div>Histopathology is critical for disease diagnosis, and digital pathology has transformed traditional workflows by digitizing slides, enabling remote consultations, and enhancing analysis through computational methods. In this systematic review, we evaluated open-source visual analytics abilities in digital pathology by screening 254 studies and including 52 that met predefined criteria. Our analysis reveals that these solutions—comprising abilities (<em>n</em> = 29), software (<em>n</em> = 13), and frameworks (<em>n</em> = 10)—are predominantly applied in cancer research (e.g., breast, colon, ovarian, and prostate cancers) and primarily utilize whole slide images. Key contributions include advanced image analysis capabilities (as demonstrated by platforms such as QuPath and CellProfiler) and the integration of machine learning for diagnostic support, treatment planning, automated tissue segmentation, and collaborative research. Despite these promising advancements, challenges such as high computational demands, limited external validation, and difficulties integrating into clinical workflows remain. Future research should focus on establishing standardized validation frameworks, aligning with regulatory requirements, and enhancing user-centric designs to promote robust, interoperable solutions for clinical adoption.</div></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"18 ","pages":"Article 100454"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing open-source visual analytics in digital pathology: A systematic review of tools, trends, and clinical applications\",\"authors\":\"Zahoor Ahmad , Mahmood Alzubaidi , Khaled Al-Thelaya , Corrado Calí , Sabri Boughorbel , Jens Schneider , Marco Agus\",\"doi\":\"10.1016/j.jpi.2025.100454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Histopathology is critical for disease diagnosis, and digital pathology has transformed traditional workflows by digitizing slides, enabling remote consultations, and enhancing analysis through computational methods. In this systematic review, we evaluated open-source visual analytics abilities in digital pathology by screening 254 studies and including 52 that met predefined criteria. Our analysis reveals that these solutions—comprising abilities (<em>n</em> = 29), software (<em>n</em> = 13), and frameworks (<em>n</em> = 10)—are predominantly applied in cancer research (e.g., breast, colon, ovarian, and prostate cancers) and primarily utilize whole slide images. Key contributions include advanced image analysis capabilities (as demonstrated by platforms such as QuPath and CellProfiler) and the integration of machine learning for diagnostic support, treatment planning, automated tissue segmentation, and collaborative research. Despite these promising advancements, challenges such as high computational demands, limited external validation, and difficulties integrating into clinical workflows remain. Future research should focus on establishing standardized validation frameworks, aligning with regulatory requirements, and enhancing user-centric designs to promote robust, interoperable solutions for clinical adoption.</div></div>\",\"PeriodicalId\":37769,\"journal\":{\"name\":\"Journal of Pathology Informatics\",\"volume\":\"18 \",\"pages\":\"Article 100454\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pathology Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2153353925000392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathology Informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2153353925000392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Advancing open-source visual analytics in digital pathology: A systematic review of tools, trends, and clinical applications
Histopathology is critical for disease diagnosis, and digital pathology has transformed traditional workflows by digitizing slides, enabling remote consultations, and enhancing analysis through computational methods. In this systematic review, we evaluated open-source visual analytics abilities in digital pathology by screening 254 studies and including 52 that met predefined criteria. Our analysis reveals that these solutions—comprising abilities (n = 29), software (n = 13), and frameworks (n = 10)—are predominantly applied in cancer research (e.g., breast, colon, ovarian, and prostate cancers) and primarily utilize whole slide images. Key contributions include advanced image analysis capabilities (as demonstrated by platforms such as QuPath and CellProfiler) and the integration of machine learning for diagnostic support, treatment planning, automated tissue segmentation, and collaborative research. Despite these promising advancements, challenges such as high computational demands, limited external validation, and difficulties integrating into clinical workflows remain. Future research should focus on establishing standardized validation frameworks, aligning with regulatory requirements, and enhancing user-centric designs to promote robust, interoperable solutions for clinical adoption.
期刊介绍:
The Journal of Pathology Informatics (JPI) is an open access peer-reviewed journal dedicated to the advancement of pathology informatics. This is the official journal of the Association for Pathology Informatics (API). The journal aims to publish broadly about pathology informatics and freely disseminate all articles worldwide. This journal is of interest to pathologists, informaticians, academics, researchers, health IT specialists, information officers, IT staff, vendors, and anyone with an interest in informatics. We encourage submissions from anyone with an interest in the field of pathology informatics. We publish all types of papers related to pathology informatics including original research articles, technical notes, reviews, viewpoints, commentaries, editorials, symposia, meeting abstracts, book reviews, and correspondence to the editors. All submissions are subject to rigorous peer review by the well-regarded editorial board and by expert referees in appropriate specialties.