超越游戏环境:面向任务的对话策略探索的带有参数空间噪声的进化算法

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Qingxin Xiao , Yangyang Zhao , Lingwei Dang , Yun Hao , Le Che , Qingyao Wu
{"title":"超越游戏环境:面向任务的对话策略探索的带有参数空间噪声的进化算法","authors":"Qingxin Xiao ,&nbsp;Yangyang Zhao ,&nbsp;Lingwei Dang ,&nbsp;Yun Hao ,&nbsp;Le Che ,&nbsp;Qingyao Wu","doi":"10.1016/j.neucom.2025.130639","DOIUrl":null,"url":null,"abstract":"<div><div>Reinforcement learning (RL) has achieved significant success in task-oriented dialogue (TOD) policy learning. Nevertheless, training dialogue policy through RL faces a critical challenge: insufficient exploration, which leads to the policy getting trapped in local optima. Evolutionary algorithms (EAs) enhance exploration breadth by maintaining and selecting diverse individuals, and they often add parameter space noise among different individuals to simulate mutation, thereby increasing exploration depth. This approach has proven to be an effective method for enhancing RL exploration and has shown promising results in game domains. However, previous research has not analyzed its effectiveness in TOD dialogue policy. Given the substantial differences between gaming contexts and TOD dialogue policy, this paper explores and validates the efficacy of EAs in TOD dialogue policy, investigating the effects of different evolutionary cycles and various noise strategies across different dialogue tasks to determine which combination of evolutionary cycle and noise strategy is most suitable for TOD dialogue policy. Additionally, we propose an adaptive noise evolution method that dynamically adjusts noise scales to improve exploration efficiency. Experiments on the MultiWOZ dataset demonstrate significant performance improvements, achieving state-of-the-art results in both on-policy and off-policy settings.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"648 ","pages":"Article 130639"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond game environments: Evolutionary algorithms with parameter space noise for task-oriented dialogue policy exploration\",\"authors\":\"Qingxin Xiao ,&nbsp;Yangyang Zhao ,&nbsp;Lingwei Dang ,&nbsp;Yun Hao ,&nbsp;Le Che ,&nbsp;Qingyao Wu\",\"doi\":\"10.1016/j.neucom.2025.130639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reinforcement learning (RL) has achieved significant success in task-oriented dialogue (TOD) policy learning. Nevertheless, training dialogue policy through RL faces a critical challenge: insufficient exploration, which leads to the policy getting trapped in local optima. Evolutionary algorithms (EAs) enhance exploration breadth by maintaining and selecting diverse individuals, and they often add parameter space noise among different individuals to simulate mutation, thereby increasing exploration depth. This approach has proven to be an effective method for enhancing RL exploration and has shown promising results in game domains. However, previous research has not analyzed its effectiveness in TOD dialogue policy. Given the substantial differences between gaming contexts and TOD dialogue policy, this paper explores and validates the efficacy of EAs in TOD dialogue policy, investigating the effects of different evolutionary cycles and various noise strategies across different dialogue tasks to determine which combination of evolutionary cycle and noise strategy is most suitable for TOD dialogue policy. Additionally, we propose an adaptive noise evolution method that dynamically adjusts noise scales to improve exploration efficiency. Experiments on the MultiWOZ dataset demonstrate significant performance improvements, achieving state-of-the-art results in both on-policy and off-policy settings.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"648 \",\"pages\":\"Article 130639\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225013116\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225013116","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

强化学习(RL)在任务导向对话(TOD)策略学习中取得了显著的成功。然而,通过强化学习训练对话策略面临着一个关键的挑战:探索不足,导致策略陷入局部最优。进化算法通过保持和选择不同的个体来增加探索广度,并在不同个体之间加入参数空间噪声来模拟突变,从而增加探索深度。该方法已被证明是增强强化学习探索的有效方法,并在游戏领域显示出良好的效果。然而,以往的研究并没有分析其在TOD对话政策中的有效性。鉴于游戏情境和TOD对话策略之间的本质差异,本文探讨并验证了ea在TOD对话策略中的有效性,研究了不同进化周期和不同噪音策略在不同对话任务中的影响,以确定哪种进化周期和噪音策略组合最适合TOD对话策略。此外,提出了一种动态调整噪声尺度的自适应噪声演化方法,以提高勘探效率。在MultiWOZ数据集上的实验证明了显著的性能改进,在策略设置和非策略设置中都获得了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beyond game environments: Evolutionary algorithms with parameter space noise for task-oriented dialogue policy exploration
Reinforcement learning (RL) has achieved significant success in task-oriented dialogue (TOD) policy learning. Nevertheless, training dialogue policy through RL faces a critical challenge: insufficient exploration, which leads to the policy getting trapped in local optima. Evolutionary algorithms (EAs) enhance exploration breadth by maintaining and selecting diverse individuals, and they often add parameter space noise among different individuals to simulate mutation, thereby increasing exploration depth. This approach has proven to be an effective method for enhancing RL exploration and has shown promising results in game domains. However, previous research has not analyzed its effectiveness in TOD dialogue policy. Given the substantial differences between gaming contexts and TOD dialogue policy, this paper explores and validates the efficacy of EAs in TOD dialogue policy, investigating the effects of different evolutionary cycles and various noise strategies across different dialogue tasks to determine which combination of evolutionary cycle and noise strategy is most suitable for TOD dialogue policy. Additionally, we propose an adaptive noise evolution method that dynamically adjusts noise scales to improve exploration efficiency. Experiments on the MultiWOZ dataset demonstrate significant performance improvements, achieving state-of-the-art results in both on-policy and off-policy settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信