基于深度强化学习算法的易腐产品动态定价与库存控制

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Alireza Kavoosi , Reza Tavakkoli-Moghaddam , Hedieh Sajedi , Nazanin Tajik , Keivan Tafakkori
{"title":"基于深度强化学习算法的易腐产品动态定价与库存控制","authors":"Alireza Kavoosi ,&nbsp;Reza Tavakkoli-Moghaddam ,&nbsp;Hedieh Sajedi ,&nbsp;Nazanin Tajik ,&nbsp;Keivan Tafakkori","doi":"10.1016/j.eswa.2025.128570","DOIUrl":null,"url":null,"abstract":"<div><div>Using continuous action spaces to set prices simultaneously and order quantities, this study proposes a unified deep reinforcement learning (DRL) framework for dynamic pricing and perishables inventory control in a vendor-managed environment. Sales revenue plus penalties for spoiling, returns, and transport costs are combined to create a multi-component reward that reflects profit. We incorporate a potential-based shaping term <span><math><mrow><mstyle><mi>Φ</mi></mstyle><mo>(</mo><mi>s</mi><mo>)</mo></mrow></math></span> constructed from inventory heuristics to direct exploration and shorten training time, guaranteeing no change in policy optimality. In contrast to other DRL algorithms and classical benchmarks, our empirical study, which includes seasonal demand and random returns, shows that an agent based on proximal policy optimization achieves better cumulative reward and service level.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"291 ","pages":"Article 128570"},"PeriodicalIF":7.5000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic pricing and inventory control of perishable products by a deep reinforcement learning algorithm\",\"authors\":\"Alireza Kavoosi ,&nbsp;Reza Tavakkoli-Moghaddam ,&nbsp;Hedieh Sajedi ,&nbsp;Nazanin Tajik ,&nbsp;Keivan Tafakkori\",\"doi\":\"10.1016/j.eswa.2025.128570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Using continuous action spaces to set prices simultaneously and order quantities, this study proposes a unified deep reinforcement learning (DRL) framework for dynamic pricing and perishables inventory control in a vendor-managed environment. Sales revenue plus penalties for spoiling, returns, and transport costs are combined to create a multi-component reward that reflects profit. We incorporate a potential-based shaping term <span><math><mrow><mstyle><mi>Φ</mi></mstyle><mo>(</mo><mi>s</mi><mo>)</mo></mrow></math></span> constructed from inventory heuristics to direct exploration and shorten training time, guaranteeing no change in policy optimality. In contrast to other DRL algorithms and classical benchmarks, our empirical study, which includes seasonal demand and random returns, shows that an agent based on proximal policy optimization achieves better cumulative reward and service level.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"291 \",\"pages\":\"Article 128570\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095741742502189X\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095741742502189X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用连续动作空间同时设定价格和订单数量,提出了一个统一的深度强化学习(DRL)框架,用于供应商管理环境中的动态定价和易腐品库存控制。销售收入加上破坏、退货和运输成本的惩罚,形成了一个反映利润的多成分奖励。我们结合了一个基于潜力的塑造术语Φ(s),该术语由库存启发式构建,用于直接探索和缩短训练时间,保证政策最优性不发生变化。与其他DRL算法和经典基准相比,我们的实证研究(包括季节性需求和随机收益)表明,基于近端策略优化的智能体获得了更好的累积奖励和服务水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic pricing and inventory control of perishable products by a deep reinforcement learning algorithm
Using continuous action spaces to set prices simultaneously and order quantities, this study proposes a unified deep reinforcement learning (DRL) framework for dynamic pricing and perishables inventory control in a vendor-managed environment. Sales revenue plus penalties for spoiling, returns, and transport costs are combined to create a multi-component reward that reflects profit. We incorporate a potential-based shaping term Φ(s) constructed from inventory heuristics to direct exploration and shorten training time, guaranteeing no change in policy optimality. In contrast to other DRL algorithms and classical benchmarks, our empirical study, which includes seasonal demand and random returns, shows that an agent based on proximal policy optimization achieves better cumulative reward and service level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信