{"title":"小分子影响生物分子凝聚物的物理微环境。","authors":"Yifei Pan, Junlin Lei, Shiqi Mou, Zhili Wu, Longchen Zhu, Liyao Zeng, Feng Luo, Yaping Ding, Yu Liu and Xin Zhang*, ","doi":"10.1021/jacs.5c04180","DOIUrl":null,"url":null,"abstract":"<p >Biomolecular condensates exhibit distinct microenvironments that arise from interactions between proteins, RNA, and solutions. In aqueous solutions, these membraneless structures constantly encounter small molecules that could affect the structure and properties of the condensates. However, the effects of organic small molecules in water solutions on the microenvironments of condensates remain poorly understood. In this study, we used various organic solutes as an example to explore how small molecules could influence the physicochemical properties in the microenvironment of protein condensates. Particularly, we quantitatively studied micropolarity and microviscosity using a combination of techniques, including fluorescence lifetime imaging microscopy, fluorescence recovery after photobleaching, and passive rheology. Unexpectedly, our results revealed that the microenvironment was not correlated with the polarity of organic solutes; instead, the correlation was observed on the interaction strength between water and small molecules. We found that solutes with stronger interaction with water and weaker interaction with proteins increase the micropolarity and decrease the microviscosity of condensates. Furthermore, we demonstrated that the modulation of the micropolarity of condensates could impact the miscibility of multicomponent condensates. Finally, we showed that organic solutes could influence the micropolarity of condensates and the partitioning of products in condensates, thus affecting the rate and equilibrium of the chemical reactions. In summary, our work provides a quantitative analysis of how the microenvironment of biomolecular condensates is impacted by organic solutes. Since protein condensates coexist with various types of metabolites in the aqueous cellular milieu, results from this work offer insights into how organic metabolites could regulate the microenvironment and behaviors of biological condensates.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 26","pages":"22686–22696"},"PeriodicalIF":15.6000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small Molecules Influence the Physical Microenvironment of Biomolecular Condensates\",\"authors\":\"Yifei Pan, Junlin Lei, Shiqi Mou, Zhili Wu, Longchen Zhu, Liyao Zeng, Feng Luo, Yaping Ding, Yu Liu and Xin Zhang*, \",\"doi\":\"10.1021/jacs.5c04180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Biomolecular condensates exhibit distinct microenvironments that arise from interactions between proteins, RNA, and solutions. In aqueous solutions, these membraneless structures constantly encounter small molecules that could affect the structure and properties of the condensates. However, the effects of organic small molecules in water solutions on the microenvironments of condensates remain poorly understood. In this study, we used various organic solutes as an example to explore how small molecules could influence the physicochemical properties in the microenvironment of protein condensates. Particularly, we quantitatively studied micropolarity and microviscosity using a combination of techniques, including fluorescence lifetime imaging microscopy, fluorescence recovery after photobleaching, and passive rheology. Unexpectedly, our results revealed that the microenvironment was not correlated with the polarity of organic solutes; instead, the correlation was observed on the interaction strength between water and small molecules. We found that solutes with stronger interaction with water and weaker interaction with proteins increase the micropolarity and decrease the microviscosity of condensates. Furthermore, we demonstrated that the modulation of the micropolarity of condensates could impact the miscibility of multicomponent condensates. Finally, we showed that organic solutes could influence the micropolarity of condensates and the partitioning of products in condensates, thus affecting the rate and equilibrium of the chemical reactions. In summary, our work provides a quantitative analysis of how the microenvironment of biomolecular condensates is impacted by organic solutes. Since protein condensates coexist with various types of metabolites in the aqueous cellular milieu, results from this work offer insights into how organic metabolites could regulate the microenvironment and behaviors of biological condensates.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"147 26\",\"pages\":\"22686–22696\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.5c04180\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c04180","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Small Molecules Influence the Physical Microenvironment of Biomolecular Condensates
Biomolecular condensates exhibit distinct microenvironments that arise from interactions between proteins, RNA, and solutions. In aqueous solutions, these membraneless structures constantly encounter small molecules that could affect the structure and properties of the condensates. However, the effects of organic small molecules in water solutions on the microenvironments of condensates remain poorly understood. In this study, we used various organic solutes as an example to explore how small molecules could influence the physicochemical properties in the microenvironment of protein condensates. Particularly, we quantitatively studied micropolarity and microviscosity using a combination of techniques, including fluorescence lifetime imaging microscopy, fluorescence recovery after photobleaching, and passive rheology. Unexpectedly, our results revealed that the microenvironment was not correlated with the polarity of organic solutes; instead, the correlation was observed on the interaction strength between water and small molecules. We found that solutes with stronger interaction with water and weaker interaction with proteins increase the micropolarity and decrease the microviscosity of condensates. Furthermore, we demonstrated that the modulation of the micropolarity of condensates could impact the miscibility of multicomponent condensates. Finally, we showed that organic solutes could influence the micropolarity of condensates and the partitioning of products in condensates, thus affecting the rate and equilibrium of the chemical reactions. In summary, our work provides a quantitative analysis of how the microenvironment of biomolecular condensates is impacted by organic solutes. Since protein condensates coexist with various types of metabolites in the aqueous cellular milieu, results from this work offer insights into how organic metabolites could regulate the microenvironment and behaviors of biological condensates.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.