Xinkai Zhao, Yuichiro Hayashi, Masahiro Oda, Takayuki Kitasaka, Kensaku Mori
{"title":"基于扩散驱动蒸馏和对比学习的腹腔镜图像分类增量语义分割。","authors":"Xinkai Zhao, Yuichiro Hayashi, Masahiro Oda, Takayuki Kitasaka, Kensaku Mori","doi":"10.1007/s11548-025-03405-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Understanding anatomical structures in laparoscopic images is crucial for various types of laparoscopic surgery. However, creating specialized datasets for each type is both inefficient and challenging. This highlights the clinical significance of exploring class-incremental semantic segmentation (CISS) for laparoscopic images. Although CISS has been widely studied in diverse image datasets, in clinical settings, incremental data typically consists of new patient images rather than reusing previous images, necessitating a novel algorithm.</p><p><strong>Methods: </strong>We introduce a distillation approach driven by a diffusion model for CISS of laparoscopic images. Specifically, an unconditional diffusion model is trained to generate synthetic laparoscopic images, which are then incorporated into subsequent training steps. A distillation network is employed to extract and transfer knowledge from networks trained in earlier steps. Additionally, to address the challenge posed by the limited semantic information available in individual laparoscopic images, we employ cross-image contrastive learning, enhancing the model's ability to distinguish subtle variations across images.</p><p><strong>Results: </strong>Our method was trained and evaluated on all 11 anatomical structures from the Dresden Surgical Anatomy Dataset, which presents significant challenges due to its dispersed annotations. Extensive experiments demonstrate that our approach outperforms other methods, especially in difficult categories such as the ureter and vesicular glands, where it surpasses even supervised offline learning.</p><p><strong>Conclusion: </strong>This study is the first to address class-incremental semantic segmentation for laparoscopic images, significantly improving the adaptability of segmentation models to new anatomical classes in surgical procedures.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusion-driven distillation and contrastive learning for class-incremental semantic segmentation of laparoscopic images.\",\"authors\":\"Xinkai Zhao, Yuichiro Hayashi, Masahiro Oda, Takayuki Kitasaka, Kensaku Mori\",\"doi\":\"10.1007/s11548-025-03405-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Understanding anatomical structures in laparoscopic images is crucial for various types of laparoscopic surgery. However, creating specialized datasets for each type is both inefficient and challenging. This highlights the clinical significance of exploring class-incremental semantic segmentation (CISS) for laparoscopic images. Although CISS has been widely studied in diverse image datasets, in clinical settings, incremental data typically consists of new patient images rather than reusing previous images, necessitating a novel algorithm.</p><p><strong>Methods: </strong>We introduce a distillation approach driven by a diffusion model for CISS of laparoscopic images. Specifically, an unconditional diffusion model is trained to generate synthetic laparoscopic images, which are then incorporated into subsequent training steps. A distillation network is employed to extract and transfer knowledge from networks trained in earlier steps. Additionally, to address the challenge posed by the limited semantic information available in individual laparoscopic images, we employ cross-image contrastive learning, enhancing the model's ability to distinguish subtle variations across images.</p><p><strong>Results: </strong>Our method was trained and evaluated on all 11 anatomical structures from the Dresden Surgical Anatomy Dataset, which presents significant challenges due to its dispersed annotations. Extensive experiments demonstrate that our approach outperforms other methods, especially in difficult categories such as the ureter and vesicular glands, where it surpasses even supervised offline learning.</p><p><strong>Conclusion: </strong>This study is the first to address class-incremental semantic segmentation for laparoscopic images, significantly improving the adaptability of segmentation models to new anatomical classes in surgical procedures.</p>\",\"PeriodicalId\":51251,\"journal\":{\"name\":\"International Journal of Computer Assisted Radiology and Surgery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Assisted Radiology and Surgery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11548-025-03405-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-025-03405-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Diffusion-driven distillation and contrastive learning for class-incremental semantic segmentation of laparoscopic images.
Purpose: Understanding anatomical structures in laparoscopic images is crucial for various types of laparoscopic surgery. However, creating specialized datasets for each type is both inefficient and challenging. This highlights the clinical significance of exploring class-incremental semantic segmentation (CISS) for laparoscopic images. Although CISS has been widely studied in diverse image datasets, in clinical settings, incremental data typically consists of new patient images rather than reusing previous images, necessitating a novel algorithm.
Methods: We introduce a distillation approach driven by a diffusion model for CISS of laparoscopic images. Specifically, an unconditional diffusion model is trained to generate synthetic laparoscopic images, which are then incorporated into subsequent training steps. A distillation network is employed to extract and transfer knowledge from networks trained in earlier steps. Additionally, to address the challenge posed by the limited semantic information available in individual laparoscopic images, we employ cross-image contrastive learning, enhancing the model's ability to distinguish subtle variations across images.
Results: Our method was trained and evaluated on all 11 anatomical structures from the Dresden Surgical Anatomy Dataset, which presents significant challenges due to its dispersed annotations. Extensive experiments demonstrate that our approach outperforms other methods, especially in difficult categories such as the ureter and vesicular glands, where it surpasses even supervised offline learning.
Conclusion: This study is the first to address class-incremental semantic segmentation for laparoscopic images, significantly improving the adaptability of segmentation models to new anatomical classes in surgical procedures.
期刊介绍:
The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.