Sean M Watson, Edward P Harvey, Novalia Pishesha, Hidde L Ploegh, Timothy A Springer
{"title":"靶向EGFR的纳米体提供了对胶质母细胞瘤突变稳定构象的见解。","authors":"Sean M Watson, Edward P Harvey, Novalia Pishesha, Hidde L Ploegh, Timothy A Springer","doi":"10.1016/j.jbc.2025.110374","DOIUrl":null,"url":null,"abstract":"<p><p>Oncogenic mutations in the epidermal growth factor receptor (EGFR) promote tumorigenesis by stabilizing active or pre-active receptor conformations. Most EGFR-driven cancers are characterized by kinase domain mutations that directly activate the receptor. However, brain cancers such as glioblastoma multiforme (GBM) uniquely harbor mutations in the EGFR ectodomain that allosterically activate the kinase domain. Despite significant advances in understanding the physiologic and pathogenic roles of EGFR, the conformational characteristics that define ligand-independent EGFR activation in GBM remain poorly understood. In this study, we use naïve and post-immune yeast-displayed nanobody libraries to discover four nanobody groups that with benchmark nanobodies define a total of five groups with unique binding signatures and specificities for GBM mutation-stabilized conformational states. Nanobodies in groups 1 and 2 block ligand, selectively bind the inactive, tethered conformation, and favor wild-type EGFR over GBM-stabilized conformations. In contrast, nanobodies in groups 4 and 5 do not block ligand, target active or pre-active conformations, and selectively bind GBM-stabilized conformations. Additionally, nanobodies in group 3 block ligand and appear to be conformation agnostic. We observed domain-specific bias in the nanobodies' selectivity for GBM mutations, suggesting that mutations across different ectodomain regions stabilize distinct conformations. This work advances our understanding of EGFR conformational equilibria in the context of GBM. The observed cooperativity and mutation-dependent binding of nanobodies emphasize their utility in dissecting EGFR activation mechanisms and in developing targeted therapies for EGFR-driven cancers, including GBM.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"110374"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanobodies targeting EGFR provide insight into conformations stabilized by glioblastoma mutations.\",\"authors\":\"Sean M Watson, Edward P Harvey, Novalia Pishesha, Hidde L Ploegh, Timothy A Springer\",\"doi\":\"10.1016/j.jbc.2025.110374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oncogenic mutations in the epidermal growth factor receptor (EGFR) promote tumorigenesis by stabilizing active or pre-active receptor conformations. Most EGFR-driven cancers are characterized by kinase domain mutations that directly activate the receptor. However, brain cancers such as glioblastoma multiforme (GBM) uniquely harbor mutations in the EGFR ectodomain that allosterically activate the kinase domain. Despite significant advances in understanding the physiologic and pathogenic roles of EGFR, the conformational characteristics that define ligand-independent EGFR activation in GBM remain poorly understood. In this study, we use naïve and post-immune yeast-displayed nanobody libraries to discover four nanobody groups that with benchmark nanobodies define a total of five groups with unique binding signatures and specificities for GBM mutation-stabilized conformational states. Nanobodies in groups 1 and 2 block ligand, selectively bind the inactive, tethered conformation, and favor wild-type EGFR over GBM-stabilized conformations. In contrast, nanobodies in groups 4 and 5 do not block ligand, target active or pre-active conformations, and selectively bind GBM-stabilized conformations. Additionally, nanobodies in group 3 block ligand and appear to be conformation agnostic. We observed domain-specific bias in the nanobodies' selectivity for GBM mutations, suggesting that mutations across different ectodomain regions stabilize distinct conformations. This work advances our understanding of EGFR conformational equilibria in the context of GBM. The observed cooperativity and mutation-dependent binding of nanobodies emphasize their utility in dissecting EGFR activation mechanisms and in developing targeted therapies for EGFR-driven cancers, including GBM.</p>\",\"PeriodicalId\":15140,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":\" \",\"pages\":\"110374\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2025.110374\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110374","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Nanobodies targeting EGFR provide insight into conformations stabilized by glioblastoma mutations.
Oncogenic mutations in the epidermal growth factor receptor (EGFR) promote tumorigenesis by stabilizing active or pre-active receptor conformations. Most EGFR-driven cancers are characterized by kinase domain mutations that directly activate the receptor. However, brain cancers such as glioblastoma multiforme (GBM) uniquely harbor mutations in the EGFR ectodomain that allosterically activate the kinase domain. Despite significant advances in understanding the physiologic and pathogenic roles of EGFR, the conformational characteristics that define ligand-independent EGFR activation in GBM remain poorly understood. In this study, we use naïve and post-immune yeast-displayed nanobody libraries to discover four nanobody groups that with benchmark nanobodies define a total of five groups with unique binding signatures and specificities for GBM mutation-stabilized conformational states. Nanobodies in groups 1 and 2 block ligand, selectively bind the inactive, tethered conformation, and favor wild-type EGFR over GBM-stabilized conformations. In contrast, nanobodies in groups 4 and 5 do not block ligand, target active or pre-active conformations, and selectively bind GBM-stabilized conformations. Additionally, nanobodies in group 3 block ligand and appear to be conformation agnostic. We observed domain-specific bias in the nanobodies' selectivity for GBM mutations, suggesting that mutations across different ectodomain regions stabilize distinct conformations. This work advances our understanding of EGFR conformational equilibria in the context of GBM. The observed cooperativity and mutation-dependent binding of nanobodies emphasize their utility in dissecting EGFR activation mechanisms and in developing targeted therapies for EGFR-driven cancers, including GBM.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.