使用尿类固醇组学和机器学习预测先天性肾上腺增生的治疗结果。

IF 5.3 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Ozair Abawi, Grit Sommer, Michael Grössl, Ulrike Halbsguth, Therina du Toit, Sabine E Hannema, Christiaan de Bruin, Evangelia Charmandari, Erica L T van den Akker, Alexander B Leichtle, Christa E Flück
{"title":"使用尿类固醇组学和机器学习预测先天性肾上腺增生的治疗结果。","authors":"Ozair Abawi, Grit Sommer, Michael Grössl, Ulrike Halbsguth, Therina du Toit, Sabine E Hannema, Christiaan de Bruin, Evangelia Charmandari, Erica L T van den Akker, Alexander B Leichtle, Christa E Flück","doi":"10.1093/ejendo/lvaf121","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Treatment monitoring of individuals with congenital adrenal hyperplasia (CAH) remains unsatisfactory. Comprehensive 24h urine steroid profiling provides detailed insight into adrenal steroid pathways. We investigated whether 24h urine steroid profiling can predict treatment control in children and adolescents with CAH using machine learning (ML).</p><p><strong>Design: </strong>Prospective observational cohort study.</p><p><strong>Methods: </strong>This study included children with 21-hydroxylase deficiency. On 24h urines of 2 consecutive visits 40 steroids were measured by gas chromatography-mass spectrometry. Treatment outcome was clinically classified as undertreated, optimally treated or overtreated. We used sparse partial least-squares discriminant analysis (sPLS-DA) to investigate prediction of treatment outcome. We computed area under the ROC-curve (AUC) of two sPLS-DA models: (1) using only 24h urine metabolites, (2) adding clinical variables.</p><p><strong>Results: </strong>We included 112 visits (68 optimal, 44 undertreatment) from 59 patients: 27 (46%) girls, 46 (78%) classic CAH, 19 (32%) prepubertal. Mean age at first visit was 11.9 ± 4.0 years and mean BMI SDS 0.6 ± 1.1. SPLS-DA using 24h urine metabolites showed clear clustering of optimally treated patients on two components, while undertreated patients were more heterogenous (AUC 0.88). The model selected pregnanetriol and 17α-hydroxypregnanolone contributing to excluding optimal treatment and 5 metabolites contributing to excluding undertreatment: 17β-estradiol, cortisone, tetrahydroaldosterone, androstenetriol, and etiocholanolone. Addition of clinical variables marginally improved classification (AUC 0.90).</p><p><strong>Conclusions: </strong>Using ML on 24h urine steroid profiling predicted treatment outcome in children with CAH, even in the absence of clinical data, suggesting that routine comprehensive 24h urine steroid profiling could improve treatment monitoring in CAH.</p>","PeriodicalId":11884,"journal":{"name":"European Journal of Endocrinology","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Treatment Outcome in Congenital Adrenal Hyperplasia Using Urine Steroidomics and Machine Learning.\",\"authors\":\"Ozair Abawi, Grit Sommer, Michael Grössl, Ulrike Halbsguth, Therina du Toit, Sabine E Hannema, Christiaan de Bruin, Evangelia Charmandari, Erica L T van den Akker, Alexander B Leichtle, Christa E Flück\",\"doi\":\"10.1093/ejendo/lvaf121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Treatment monitoring of individuals with congenital adrenal hyperplasia (CAH) remains unsatisfactory. Comprehensive 24h urine steroid profiling provides detailed insight into adrenal steroid pathways. We investigated whether 24h urine steroid profiling can predict treatment control in children and adolescents with CAH using machine learning (ML).</p><p><strong>Design: </strong>Prospective observational cohort study.</p><p><strong>Methods: </strong>This study included children with 21-hydroxylase deficiency. On 24h urines of 2 consecutive visits 40 steroids were measured by gas chromatography-mass spectrometry. Treatment outcome was clinically classified as undertreated, optimally treated or overtreated. We used sparse partial least-squares discriminant analysis (sPLS-DA) to investigate prediction of treatment outcome. We computed area under the ROC-curve (AUC) of two sPLS-DA models: (1) using only 24h urine metabolites, (2) adding clinical variables.</p><p><strong>Results: </strong>We included 112 visits (68 optimal, 44 undertreatment) from 59 patients: 27 (46%) girls, 46 (78%) classic CAH, 19 (32%) prepubertal. Mean age at first visit was 11.9 ± 4.0 years and mean BMI SDS 0.6 ± 1.1. SPLS-DA using 24h urine metabolites showed clear clustering of optimally treated patients on two components, while undertreated patients were more heterogenous (AUC 0.88). The model selected pregnanetriol and 17α-hydroxypregnanolone contributing to excluding optimal treatment and 5 metabolites contributing to excluding undertreatment: 17β-estradiol, cortisone, tetrahydroaldosterone, androstenetriol, and etiocholanolone. Addition of clinical variables marginally improved classification (AUC 0.90).</p><p><strong>Conclusions: </strong>Using ML on 24h urine steroid profiling predicted treatment outcome in children with CAH, even in the absence of clinical data, suggesting that routine comprehensive 24h urine steroid profiling could improve treatment monitoring in CAH.</p>\",\"PeriodicalId\":11884,\"journal\":{\"name\":\"European Journal of Endocrinology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/ejendo/lvaf121\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ejendo/lvaf121","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

目的:先天性肾上腺增生症(CAH)患者的治疗监测仍不理想。全面的24小时尿液类固醇分析提供了肾上腺类固醇途径的详细见解。我们使用机器学习(ML)研究了24小时尿液类固醇分析是否可以预测儿童和青少年CAH的治疗控制。设计:前瞻性观察队列研究。方法:本研究纳入21-羟化酶缺乏症儿童。采用气相色谱-质谱联用法测定连续2次就诊患者24小时尿液中40种甾体激素的含量。治疗结果临床分为治疗不足、最佳治疗和过度治疗。我们使用稀疏偏最小二乘判别分析(sPLS-DA)来研究治疗结果的预测。我们计算了两种sPLS-DA模型的roc曲线下面积(AUC):(1)仅使用24小时尿液代谢物,(2)添加临床变量。结果:我们纳入了59例患者的112次就诊(68例最佳,44例治疗不足):27例(46%)女孩,46例(78%)经典CAH, 19例(32%)青春期前。首次就诊时平均年龄11.9±4.0岁,平均BMI SDS为0.6±1.1。使用24小时尿液代谢物的SPLS-DA显示,最佳治疗患者在两种成分上有明确的聚类,而治疗不足的患者则更具异质性(AUC 0.88)。该模型选择了排除最佳处理的妊娠三醇和17α-羟基孕酮,以及排除治疗不足的5种代谢物:17β-雌二醇、可的松、四氢醛固酮、雄烯三醇和etiocholanolone。临床变量的加入略微改善了分类(AUC 0.90)。结论:即使在缺乏临床数据的情况下,使用ML进行24小时尿类固醇分析也可以预测CAH患儿的治疗结果,这表明常规的24小时尿类固醇综合分析可以改善CAH的治疗监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Treatment Outcome in Congenital Adrenal Hyperplasia Using Urine Steroidomics and Machine Learning.

Objective: Treatment monitoring of individuals with congenital adrenal hyperplasia (CAH) remains unsatisfactory. Comprehensive 24h urine steroid profiling provides detailed insight into adrenal steroid pathways. We investigated whether 24h urine steroid profiling can predict treatment control in children and adolescents with CAH using machine learning (ML).

Design: Prospective observational cohort study.

Methods: This study included children with 21-hydroxylase deficiency. On 24h urines of 2 consecutive visits 40 steroids were measured by gas chromatography-mass spectrometry. Treatment outcome was clinically classified as undertreated, optimally treated or overtreated. We used sparse partial least-squares discriminant analysis (sPLS-DA) to investigate prediction of treatment outcome. We computed area under the ROC-curve (AUC) of two sPLS-DA models: (1) using only 24h urine metabolites, (2) adding clinical variables.

Results: We included 112 visits (68 optimal, 44 undertreatment) from 59 patients: 27 (46%) girls, 46 (78%) classic CAH, 19 (32%) prepubertal. Mean age at first visit was 11.9 ± 4.0 years and mean BMI SDS 0.6 ± 1.1. SPLS-DA using 24h urine metabolites showed clear clustering of optimally treated patients on two components, while undertreated patients were more heterogenous (AUC 0.88). The model selected pregnanetriol and 17α-hydroxypregnanolone contributing to excluding optimal treatment and 5 metabolites contributing to excluding undertreatment: 17β-estradiol, cortisone, tetrahydroaldosterone, androstenetriol, and etiocholanolone. Addition of clinical variables marginally improved classification (AUC 0.90).

Conclusions: Using ML on 24h urine steroid profiling predicted treatment outcome in children with CAH, even in the absence of clinical data, suggesting that routine comprehensive 24h urine steroid profiling could improve treatment monitoring in CAH.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Endocrinology
European Journal of Endocrinology 医学-内分泌学与代谢
CiteScore
9.80
自引率
3.40%
发文量
354
审稿时长
1 months
期刊介绍: European Journal of Endocrinology is the official journal of the European Society of Endocrinology. Its predecessor journal is Acta Endocrinologica. The journal publishes high-quality original clinical and translational research papers and reviews in paediatric and adult endocrinology, as well as clinical practice guidelines, position statements and debates. Case reports will only be considered if they represent exceptional insights or advances in clinical endocrinology. Topics covered include, but are not limited to, Adrenal and Steroid, Bone and Mineral Metabolism, Hormones and Cancer, Pituitary and Hypothalamus, Thyroid and Reproduction. In the field of Diabetes, Obesity and Metabolism we welcome manuscripts addressing endocrine mechanisms of disease and its complications, management of obesity/diabetes in the context of other endocrine conditions, or aspects of complex disease management. Reports may encompass natural history studies, mechanistic studies, or clinical trials. Equal consideration is given to all manuscripts in English from any country.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信