探索巨细胞动脉炎和健康人血管超声图像的人类专家分类的图像分辨率极限:GCA-US-AI项目。

IF 20.3 1区 医学 Q1 RHEUMATOLOGY
Claus-Juergen Bauer, Stavros Chrysidis, Christian Dejaco, Matthew J Koster, Minna J Kohler, Sara Monti, Wolfgang A Schmidt, Chetan B Mukhtyar, Pantelis Karakostas, Marcin Milchert, Cristina Ponte, Christina Duftner, Eugenio de Miguel, Alojzija Hocevar, Annamaria Iagnocco, Lene Terslev, Uffe Møller Døhn, Berit Dalsgaard Nielsen, Aaron Juche, Luca Seitz, Kresten Krarup Keller, Rositsa Karalilova, Thomas Daikeler, Sarah Louise Mackie, Karina Torralba, Kornelis S M van der Geest, Dennis Boumans, Philipp Bosch, Alessandro Tomelleri, Markus Aschwanden, Tanaz A Kermani, Andreas Diamantopoulos, Ulrich Fredberg, Nevsun Inanc, Simon M Petzinna, Shadi Albarqouni, Charlotte Behning, Valentin Sebastian Schäfer
{"title":"探索巨细胞动脉炎和健康人血管超声图像的人类专家分类的图像分辨率极限:GCA-US-AI项目。","authors":"Claus-Juergen Bauer, Stavros Chrysidis, Christian Dejaco, Matthew J Koster, Minna J Kohler, Sara Monti, Wolfgang A Schmidt, Chetan B Mukhtyar, Pantelis Karakostas, Marcin Milchert, Cristina Ponte, Christina Duftner, Eugenio de Miguel, Alojzija Hocevar, Annamaria Iagnocco, Lene Terslev, Uffe Møller Døhn, Berit Dalsgaard Nielsen, Aaron Juche, Luca Seitz, Kresten Krarup Keller, Rositsa Karalilova, Thomas Daikeler, Sarah Louise Mackie, Karina Torralba, Kornelis S M van der Geest, Dennis Boumans, Philipp Bosch, Alessandro Tomelleri, Markus Aschwanden, Tanaz A Kermani, Andreas Diamantopoulos, Ulrich Fredberg, Nevsun Inanc, Simon M Petzinna, Shadi Albarqouni, Charlotte Behning, Valentin Sebastian Schäfer","doi":"10.1016/j.ard.2025.05.010","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Prompt diagnosis of giant cell arteritis (GCA) with ultrasound is crucial for preventing severe ocular and other complications, yet expertise in ultrasound performance is scarce. The development of an artificial intelligence (AI)-based assistant that facilitates ultrasound image classification and helps to diagnose GCA early promises to close the existing gap. In the projection of the planned AI, this study investigates the minimum image resolution required for human experts to reliably classify ultrasound images of arteries commonly affected by GCA for the presence or absence of GCA.</p><p><strong>Methods: </strong>Thirty-one international experts in GCA ultrasonography participated in a web-based exercise. They were asked to classify 10 ultrasound images for each of 5 vascular segments as GCA, normal, or not able to classify. The following segments were assessed: (1) superficial common temporal artery, (2) its frontal and (3) parietal branches (all in transverse view), (4) axillary artery in transverse view, and 5) axillary artery in longitudinal view. Identical images were shown at different resolutions, namely 32 × 32, 64 × 64, 128 × 128, 224 × 224, and 512 × 512 pixels, thereby resulting in a total of 250 images to be classified by every study participant.</p><p><strong>Results: </strong>Classification performance improved with increasing resolution up to a threshold, plateauing at 224 × 224 pixels. At 224 × 224 pixels, the overall classification sensitivity was 0.767 (95% CI, 0.737-0.796), and specificity was 0.862 (95% CI, 0.831-0.888).</p><p><strong>Conclusions: </strong>A resolution of 224 × 224 pixels ensures reliable human expert classification and aligns with the input requirements of many common AI-based architectures. Thus, the results of this study substantially guide projected AI development.</p>","PeriodicalId":8087,"journal":{"name":"Annals of the Rheumatic Diseases","volume":" ","pages":""},"PeriodicalIF":20.3000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the limit of image resolution for human expert classification of vascular ultrasound images in giant cell arteritis and healthy subjects: the GCA-US-AI project.\",\"authors\":\"Claus-Juergen Bauer, Stavros Chrysidis, Christian Dejaco, Matthew J Koster, Minna J Kohler, Sara Monti, Wolfgang A Schmidt, Chetan B Mukhtyar, Pantelis Karakostas, Marcin Milchert, Cristina Ponte, Christina Duftner, Eugenio de Miguel, Alojzija Hocevar, Annamaria Iagnocco, Lene Terslev, Uffe Møller Døhn, Berit Dalsgaard Nielsen, Aaron Juche, Luca Seitz, Kresten Krarup Keller, Rositsa Karalilova, Thomas Daikeler, Sarah Louise Mackie, Karina Torralba, Kornelis S M van der Geest, Dennis Boumans, Philipp Bosch, Alessandro Tomelleri, Markus Aschwanden, Tanaz A Kermani, Andreas Diamantopoulos, Ulrich Fredberg, Nevsun Inanc, Simon M Petzinna, Shadi Albarqouni, Charlotte Behning, Valentin Sebastian Schäfer\",\"doi\":\"10.1016/j.ard.2025.05.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Prompt diagnosis of giant cell arteritis (GCA) with ultrasound is crucial for preventing severe ocular and other complications, yet expertise in ultrasound performance is scarce. The development of an artificial intelligence (AI)-based assistant that facilitates ultrasound image classification and helps to diagnose GCA early promises to close the existing gap. In the projection of the planned AI, this study investigates the minimum image resolution required for human experts to reliably classify ultrasound images of arteries commonly affected by GCA for the presence or absence of GCA.</p><p><strong>Methods: </strong>Thirty-one international experts in GCA ultrasonography participated in a web-based exercise. They were asked to classify 10 ultrasound images for each of 5 vascular segments as GCA, normal, or not able to classify. The following segments were assessed: (1) superficial common temporal artery, (2) its frontal and (3) parietal branches (all in transverse view), (4) axillary artery in transverse view, and 5) axillary artery in longitudinal view. Identical images were shown at different resolutions, namely 32 × 32, 64 × 64, 128 × 128, 224 × 224, and 512 × 512 pixels, thereby resulting in a total of 250 images to be classified by every study participant.</p><p><strong>Results: </strong>Classification performance improved with increasing resolution up to a threshold, plateauing at 224 × 224 pixels. At 224 × 224 pixels, the overall classification sensitivity was 0.767 (95% CI, 0.737-0.796), and specificity was 0.862 (95% CI, 0.831-0.888).</p><p><strong>Conclusions: </strong>A resolution of 224 × 224 pixels ensures reliable human expert classification and aligns with the input requirements of many common AI-based architectures. Thus, the results of this study substantially guide projected AI development.</p>\",\"PeriodicalId\":8087,\"journal\":{\"name\":\"Annals of the Rheumatic Diseases\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":20.3000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the Rheumatic Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ard.2025.05.010\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RHEUMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Rheumatic Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ard.2025.05.010","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RHEUMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:快速超声诊断巨细胞动脉炎(GCA)对于预防严重的眼部并发症和其他并发症至关重要,但超声表现方面的专业知识很少。开发一种基于人工智能(AI)的助手,有助于超声图像分类,并有助于早期诊断GCA,有望缩小现有的差距。在计划的人工智能投影中,本研究调查了人类专家可靠地对常见的受GCA影响的动脉超声图像进行分类所需的最低图像分辨率,以确定是否存在GCA。方法:31位国际GCA超声专家参与了网络演习。他们被要求对5个血管节段的10张超声图像进行分类,分别为GCA、正常或无法分类。评估以下段:(1)颞浅总动脉,(2)其额支,(3)其顶支(均在横切面),(4)腋窝动脉横切面,(5)腋窝动脉纵切面。相同的图像以不同的分辨率显示,即32 × 32、64 × 64、128 × 128、224 × 224和512 × 512像素,因此每个研究参与者总共需要分类250张图像。结果:分类性能随着分辨率的提高而提高,达到阈值,在224 × 224像素处趋于稳定。在224 × 224像素处,总体分类敏感性为0.767 (95% CI, 0.737 ~ 0.796),特异性为0.862 (95% CI, 0.831 ~ 0.888)。结论:224 × 224像素的分辨率确保了可靠的人类专家分类,并符合许多常见的基于ai的架构的输入要求。因此,这项研究的结果在很大程度上指导了人工智能的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the limit of image resolution for human expert classification of vascular ultrasound images in giant cell arteritis and healthy subjects: the GCA-US-AI project.

Objectives: Prompt diagnosis of giant cell arteritis (GCA) with ultrasound is crucial for preventing severe ocular and other complications, yet expertise in ultrasound performance is scarce. The development of an artificial intelligence (AI)-based assistant that facilitates ultrasound image classification and helps to diagnose GCA early promises to close the existing gap. In the projection of the planned AI, this study investigates the minimum image resolution required for human experts to reliably classify ultrasound images of arteries commonly affected by GCA for the presence or absence of GCA.

Methods: Thirty-one international experts in GCA ultrasonography participated in a web-based exercise. They were asked to classify 10 ultrasound images for each of 5 vascular segments as GCA, normal, or not able to classify. The following segments were assessed: (1) superficial common temporal artery, (2) its frontal and (3) parietal branches (all in transverse view), (4) axillary artery in transverse view, and 5) axillary artery in longitudinal view. Identical images were shown at different resolutions, namely 32 × 32, 64 × 64, 128 × 128, 224 × 224, and 512 × 512 pixels, thereby resulting in a total of 250 images to be classified by every study participant.

Results: Classification performance improved with increasing resolution up to a threshold, plateauing at 224 × 224 pixels. At 224 × 224 pixels, the overall classification sensitivity was 0.767 (95% CI, 0.737-0.796), and specificity was 0.862 (95% CI, 0.831-0.888).

Conclusions: A resolution of 224 × 224 pixels ensures reliable human expert classification and aligns with the input requirements of many common AI-based architectures. Thus, the results of this study substantially guide projected AI development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of the Rheumatic Diseases
Annals of the Rheumatic Diseases 医学-风湿病学
CiteScore
35.00
自引率
9.90%
发文量
3728
审稿时长
1.4 months
期刊介绍: Annals of the Rheumatic Diseases (ARD) is an international peer-reviewed journal covering all aspects of rheumatology, which includes the full spectrum of musculoskeletal conditions, arthritic disease, and connective tissue disorders. ARD publishes basic, clinical, and translational scientific research, including the most important recommendations for the management of various conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信