通过前手性卤素取代,手性生成非手性下菱形三金刚烷。

IF 2.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Aravindhan R, Jianping Hu, Ummal Momeen M
{"title":"通过前手性卤素取代,手性生成非手性下菱形三金刚烷。","authors":"Aravindhan R, Jianping Hu, Ummal Momeen M","doi":"10.1007/s00894-025-06407-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Context: </strong>Our work demonstrates the chiral and chiroptical behavior of lower diamondoid molecules such as triamantane. Through the halogen substitution prochirality process, chirality was attained from the achiral triamantane molecule. The chiroptical behavior of chiral triamantane obtained from VCD, ROA, and ORD analysis evidences the significant chiral activity for all halogen substitutions ranging from fluorine to iodine for both S and R enantiomers. These chiral and chiroptical characteristics of the triamantane enantiomers can be tuned well through various halogen substitutions. The absolute configurations for chiral triamantane molecules are identified through the Cahn-Ingold-Prelog rule together with VCD analysis. The optical rotatory dispersion (ORD) of chiral triamantane molecules is dominant for chlorine, bromine, and iodine substitutions. Chiral triamantane molecules with various halogen substitutions also find a prominent role in pharmacology through their anisotropic charge distribution and binding abilities, tunable lipophilicity, nominal synthetic accessibility, and good bioavailability score.</p><p><strong>Methods: </strong>The absolute configurations for chiral triamantane molecules are identified through the Cahn-Ingold-Prelog rule. To study the chiroptical behavior of chiral triamantane molecules, wB97XD and M06-2X DFT functionals are employed, and for the initial guesses, 6-311G(d,p) and MidiX basis sets are used.</p>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 7","pages":"190"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chiral generation in achiral lower diamondoid triamantane through prochiral halogen substitution.\",\"authors\":\"Aravindhan R, Jianping Hu, Ummal Momeen M\",\"doi\":\"10.1007/s00894-025-06407-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Context: </strong>Our work demonstrates the chiral and chiroptical behavior of lower diamondoid molecules such as triamantane. Through the halogen substitution prochirality process, chirality was attained from the achiral triamantane molecule. The chiroptical behavior of chiral triamantane obtained from VCD, ROA, and ORD analysis evidences the significant chiral activity for all halogen substitutions ranging from fluorine to iodine for both S and R enantiomers. These chiral and chiroptical characteristics of the triamantane enantiomers can be tuned well through various halogen substitutions. The absolute configurations for chiral triamantane molecules are identified through the Cahn-Ingold-Prelog rule together with VCD analysis. The optical rotatory dispersion (ORD) of chiral triamantane molecules is dominant for chlorine, bromine, and iodine substitutions. Chiral triamantane molecules with various halogen substitutions also find a prominent role in pharmacology through their anisotropic charge distribution and binding abilities, tunable lipophilicity, nominal synthetic accessibility, and good bioavailability score.</p><p><strong>Methods: </strong>The absolute configurations for chiral triamantane molecules are identified through the Cahn-Ingold-Prelog rule. To study the chiroptical behavior of chiral triamantane molecules, wB97XD and M06-2X DFT functionals are employed, and for the initial guesses, 6-311G(d,p) and MidiX basis sets are used.</p>\",\"PeriodicalId\":651,\"journal\":{\"name\":\"Journal of Molecular Modeling\",\"volume\":\"31 7\",\"pages\":\"190\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Modeling\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s00894-025-06407-7\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00894-025-06407-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:我们的工作证明了低金刚石类分子如三金刚烷的手性和手性行为。通过卤素取代前手性反应,得到了非手性三烷分子的手性。从VCD、ROA和ORD分析中获得的手性三金刚烷的手性行为证明了S和R对映体从氟到碘的所有卤素取代都具有显著的手性活性。三烷烷对映体的这些手性和手性特征可以通过各种卤素取代得到很好的调整。通过Cahn-Ingold-Prelog规则和VCD分析,确定了手性三金刚烷分子的绝对构型。手性三金刚烷分子的旋光色散(ORD)对氯、溴和碘取代起主导作用。具有不同卤素取代的手性三金刚烷分子也通过其各向异性电荷分布和结合能力、可调节的亲脂性、名义合成可及性和良好的生物利用度评分在药理学中发挥了突出的作用。方法:采用Cahn-Ingold-Prelog规则确定手性三金刚烷分子的绝对构型。为了研究手性三烷分子的手性行为,我们使用了wB97XD和M06-2X DFT泛函,初始猜测使用了6-311G(d,p)和MidiX基集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chiral generation in achiral lower diamondoid triamantane through prochiral halogen substitution.

Context: Our work demonstrates the chiral and chiroptical behavior of lower diamondoid molecules such as triamantane. Through the halogen substitution prochirality process, chirality was attained from the achiral triamantane molecule. The chiroptical behavior of chiral triamantane obtained from VCD, ROA, and ORD analysis evidences the significant chiral activity for all halogen substitutions ranging from fluorine to iodine for both S and R enantiomers. These chiral and chiroptical characteristics of the triamantane enantiomers can be tuned well through various halogen substitutions. The absolute configurations for chiral triamantane molecules are identified through the Cahn-Ingold-Prelog rule together with VCD analysis. The optical rotatory dispersion (ORD) of chiral triamantane molecules is dominant for chlorine, bromine, and iodine substitutions. Chiral triamantane molecules with various halogen substitutions also find a prominent role in pharmacology through their anisotropic charge distribution and binding abilities, tunable lipophilicity, nominal synthetic accessibility, and good bioavailability score.

Methods: The absolute configurations for chiral triamantane molecules are identified through the Cahn-Ingold-Prelog rule. To study the chiroptical behavior of chiral triamantane molecules, wB97XD and M06-2X DFT functionals are employed, and for the initial guesses, 6-311G(d,p) and MidiX basis sets are used.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Modeling
Journal of Molecular Modeling 化学-化学综合
CiteScore
3.50
自引率
4.50%
发文量
362
审稿时长
2.9 months
期刊介绍: The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling. Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry. Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信