基于三维点云的大型露天矿开挖监测数据驱动解决方案

IF 2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Taiming He, Jiasui Zhang, Lu Yang
{"title":"基于三维点云的大型露天矿开挖监测数据驱动解决方案","authors":"Taiming He,&nbsp;Jiasui Zhang,&nbsp;Lu Yang","doi":"10.1049/ipr2.70130","DOIUrl":null,"url":null,"abstract":"<p>We present an adaptive point cloud workflow that withstands heavy environmental noise and the large datasets typical of open-pit mines. The workflow automatically tunes its parameters from the statistics of each input scene, eliminating manual parameter tuning. For instance, it sets the ICP correspondence distance and the clustering threshold without user input. Additionally, our method integrates a coarse-to-fine registration strategy, robust change detection, and precise volumetric estimation based on digital elevation models. Experiments on simulated mining datasets show our method remains robust under heavy noise and misalignment, with volume errors consistently below <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mo>%</mo>\n </mrow>\n <annotation>$2\\%$</annotation>\n </semantics></math>. A field pilot study at a limestone quarry further underscores its practical reliability and operational robustness. This research provides a precise, automated solution for real-time mining monitoring, effectively advancing sustainable and intelligent mining practices. Source code and datasets are publicly available at github.com/deemoe404/volcal_baseline.</p>","PeriodicalId":56303,"journal":{"name":"IET Image Processing","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ipr2.70130","citationCount":"0","resultStr":"{\"title\":\"A Data-Driven Solution for Large-Scale Open-Pit Mines Excavation Monitoring Based on 3D Point Cloud\",\"authors\":\"Taiming He,&nbsp;Jiasui Zhang,&nbsp;Lu Yang\",\"doi\":\"10.1049/ipr2.70130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present an adaptive point cloud workflow that withstands heavy environmental noise and the large datasets typical of open-pit mines. The workflow automatically tunes its parameters from the statistics of each input scene, eliminating manual parameter tuning. For instance, it sets the ICP correspondence distance and the clustering threshold without user input. Additionally, our method integrates a coarse-to-fine registration strategy, robust change detection, and precise volumetric estimation based on digital elevation models. Experiments on simulated mining datasets show our method remains robust under heavy noise and misalignment, with volume errors consistently below <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mo>%</mo>\\n </mrow>\\n <annotation>$2\\\\%$</annotation>\\n </semantics></math>. A field pilot study at a limestone quarry further underscores its practical reliability and operational robustness. This research provides a precise, automated solution for real-time mining monitoring, effectively advancing sustainable and intelligent mining practices. Source code and datasets are publicly available at github.com/deemoe404/volcal_baseline.</p>\",\"PeriodicalId\":56303,\"journal\":{\"name\":\"IET Image Processing\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ipr2.70130\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ipr2.70130\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Image Processing","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ipr2.70130","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种自适应的点云工作流,它可以承受严重的环境噪声和露天矿典型的大数据集。工作流根据每个输入场景的统计数据自动调整其参数,消除了手动参数调整。例如,它在没有用户输入的情况下设置ICP对应距离和聚类阈值。此外,我们的方法集成了粗到精的配准策略、鲁棒变化检测和基于数字高程模型的精确体积估计。在模拟采矿数据集上的实验表明,我们的方法在强噪声和不对准下仍然具有鲁棒性,体积误差始终低于2%。在石灰石采石场的现场试验研究进一步强调了其实际可靠性和操作稳健性。该研究为实时采矿监测提供了精确、自动化的解决方案,有效地推进了可持续和智能采矿实践。源代码和数据集可在github.com/deemoe404/volcal_baseline上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Data-Driven Solution for Large-Scale Open-Pit Mines Excavation Monitoring Based on 3D Point Cloud

We present an adaptive point cloud workflow that withstands heavy environmental noise and the large datasets typical of open-pit mines. The workflow automatically tunes its parameters from the statistics of each input scene, eliminating manual parameter tuning. For instance, it sets the ICP correspondence distance and the clustering threshold without user input. Additionally, our method integrates a coarse-to-fine registration strategy, robust change detection, and precise volumetric estimation based on digital elevation models. Experiments on simulated mining datasets show our method remains robust under heavy noise and misalignment, with volume errors consistently below 2 % $2\%$ . A field pilot study at a limestone quarry further underscores its practical reliability and operational robustness. This research provides a precise, automated solution for real-time mining monitoring, effectively advancing sustainable and intelligent mining practices. Source code and datasets are publicly available at github.com/deemoe404/volcal_baseline.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Image Processing
IET Image Processing 工程技术-工程:电子与电气
CiteScore
5.40
自引率
8.70%
发文量
282
审稿时长
6 months
期刊介绍: The IET Image Processing journal encompasses research areas related to the generation, processing and communication of visual information. The focus of the journal is the coverage of the latest research results in image and video processing, including image generation and display, enhancement and restoration, segmentation, colour and texture analysis, coding and communication, implementations and architectures as well as innovative applications. Principal topics include: Generation and Display - Imaging sensors and acquisition systems, illumination, sampling and scanning, quantization, colour reproduction, image rendering, display and printing systems, evaluation of image quality. Processing and Analysis - Image enhancement, restoration, segmentation, registration, multispectral, colour and texture processing, multiresolution processing and wavelets, morphological operations, stereoscopic and 3-D processing, motion detection and estimation, video and image sequence processing. Implementations and Architectures - Image and video processing hardware and software, design and construction, architectures and software, neural, adaptive, and fuzzy processing. Coding and Transmission - Image and video compression and coding, compression standards, noise modelling, visual information networks, streamed video. Retrieval and Multimedia - Storage of images and video, database design, image retrieval, video annotation and editing, mixed media incorporating visual information, multimedia systems and applications, image and video watermarking, steganography. Applications - Innovative application of image and video processing technologies to any field, including life sciences, earth sciences, astronomy, document processing and security. Current Special Issue Call for Papers: Evolutionary Computation for Image Processing - https://digital-library.theiet.org/files/IET_IPR_CFP_EC.pdf AI-Powered 3D Vision - https://digital-library.theiet.org/files/IET_IPR_CFP_AIPV.pdf Multidisciplinary advancement of Imaging Technologies: From Medical Diagnostics and Genomics to Cognitive Machine Vision, and Artificial Intelligence - https://digital-library.theiet.org/files/IET_IPR_CFP_IST.pdf Deep Learning for 3D Reconstruction - https://digital-library.theiet.org/files/IET_IPR_CFP_DLR.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信