Ahmed A. Allam, Hassan A. Rudayni, Noha A. Ahmed, Faris F. Aba Alkhayl, Al Mokhtar Lamsabhi, Emadeldin M. Kamel
{"title":"β-葡萄糖醛酸酶在药物开发中的抑制作用:减轻药物毒性和提高治疗效果的新策略","authors":"Ahmed A. Allam, Hassan A. Rudayni, Noha A. Ahmed, Faris F. Aba Alkhayl, Al Mokhtar Lamsabhi, Emadeldin M. Kamel","doi":"10.1002/ddr.70118","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>β-glucuronidase (βG) is a critical enzyme involved in the hydrolysis of glucuronide conjugates, significantly influencing drug metabolism, detoxification processes, and enterohepatic circulation. Although essential for maintaining physiological homeostasis, dysregulated βG activity has been implicated in diverse pathological conditions, including drug-induced toxicity, inflammation, and hormone-dependent cancers. Specifically, microbial βG expressed by gut microbiota can reactivate glucuronide-conjugated drugs, leading to adverse reactions through increased drug toxicity and reduced therapeutic efficacy. Consequently, inhibition of βG has emerged as an attractive therapeutic approach to reduce chemotherapy-induced toxicity, gastrointestinal complications, and metabolic disorders. This review systematically examines recent progress in the discovery, characterization, and optimization of βG inhibitors, focusing on natural products, synthetic molecules, and microbiome-targeted agents. Structure–activity relationship analyses reveal crucial functional groups and chemical modifications necessary for enhancing inhibitor potency, selectivity, and bioavailability. In addition, contemporary advances in βG inhibitor evaluation through enzyme kinetics, molecular docking simulations, high-throughput screening, and preclinical animal models are discussed, alongside essential pharmacokinetic parameters, including absorption, distribution, metabolism, excretion, and potential drug-drug interactions. Furthermore, emerging approaches such as microbiome modulation, CRISPR-based enzyme engineering, and combination therapies are explored. Despite promising preclinical outcomes, significant challenges remain regarding clinical translation, such as selectivity, bioavailability, and regulatory compliance. Ultimately, this review highlights future opportunities in precision medicine, emphasizing personalized βG inhibitor development to optimize therapeutic safety and effectiveness across various disease states.</p>\n </div>","PeriodicalId":11291,"journal":{"name":"Drug Development Research","volume":"86 4","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"β-Glucuronidase Inhibition in Drug Development: Emerging Strategies for Mitigating Drug-Induced Toxicity and Enhancing Therapeutic Outcomes\",\"authors\":\"Ahmed A. Allam, Hassan A. Rudayni, Noha A. Ahmed, Faris F. Aba Alkhayl, Al Mokhtar Lamsabhi, Emadeldin M. Kamel\",\"doi\":\"10.1002/ddr.70118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>β-glucuronidase (βG) is a critical enzyme involved in the hydrolysis of glucuronide conjugates, significantly influencing drug metabolism, detoxification processes, and enterohepatic circulation. Although essential for maintaining physiological homeostasis, dysregulated βG activity has been implicated in diverse pathological conditions, including drug-induced toxicity, inflammation, and hormone-dependent cancers. Specifically, microbial βG expressed by gut microbiota can reactivate glucuronide-conjugated drugs, leading to adverse reactions through increased drug toxicity and reduced therapeutic efficacy. Consequently, inhibition of βG has emerged as an attractive therapeutic approach to reduce chemotherapy-induced toxicity, gastrointestinal complications, and metabolic disorders. This review systematically examines recent progress in the discovery, characterization, and optimization of βG inhibitors, focusing on natural products, synthetic molecules, and microbiome-targeted agents. Structure–activity relationship analyses reveal crucial functional groups and chemical modifications necessary for enhancing inhibitor potency, selectivity, and bioavailability. In addition, contemporary advances in βG inhibitor evaluation through enzyme kinetics, molecular docking simulations, high-throughput screening, and preclinical animal models are discussed, alongside essential pharmacokinetic parameters, including absorption, distribution, metabolism, excretion, and potential drug-drug interactions. Furthermore, emerging approaches such as microbiome modulation, CRISPR-based enzyme engineering, and combination therapies are explored. Despite promising preclinical outcomes, significant challenges remain regarding clinical translation, such as selectivity, bioavailability, and regulatory compliance. Ultimately, this review highlights future opportunities in precision medicine, emphasizing personalized βG inhibitor development to optimize therapeutic safety and effectiveness across various disease states.</p>\\n </div>\",\"PeriodicalId\":11291,\"journal\":{\"name\":\"Drug Development Research\",\"volume\":\"86 4\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Development Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ddr.70118\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ddr.70118","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
β-Glucuronidase Inhibition in Drug Development: Emerging Strategies for Mitigating Drug-Induced Toxicity and Enhancing Therapeutic Outcomes
β-glucuronidase (βG) is a critical enzyme involved in the hydrolysis of glucuronide conjugates, significantly influencing drug metabolism, detoxification processes, and enterohepatic circulation. Although essential for maintaining physiological homeostasis, dysregulated βG activity has been implicated in diverse pathological conditions, including drug-induced toxicity, inflammation, and hormone-dependent cancers. Specifically, microbial βG expressed by gut microbiota can reactivate glucuronide-conjugated drugs, leading to adverse reactions through increased drug toxicity and reduced therapeutic efficacy. Consequently, inhibition of βG has emerged as an attractive therapeutic approach to reduce chemotherapy-induced toxicity, gastrointestinal complications, and metabolic disorders. This review systematically examines recent progress in the discovery, characterization, and optimization of βG inhibitors, focusing on natural products, synthetic molecules, and microbiome-targeted agents. Structure–activity relationship analyses reveal crucial functional groups and chemical modifications necessary for enhancing inhibitor potency, selectivity, and bioavailability. In addition, contemporary advances in βG inhibitor evaluation through enzyme kinetics, molecular docking simulations, high-throughput screening, and preclinical animal models are discussed, alongside essential pharmacokinetic parameters, including absorption, distribution, metabolism, excretion, and potential drug-drug interactions. Furthermore, emerging approaches such as microbiome modulation, CRISPR-based enzyme engineering, and combination therapies are explored. Despite promising preclinical outcomes, significant challenges remain regarding clinical translation, such as selectivity, bioavailability, and regulatory compliance. Ultimately, this review highlights future opportunities in precision medicine, emphasizing personalized βG inhibitor development to optimize therapeutic safety and effectiveness across various disease states.
期刊介绍:
Drug Development Research focuses on research topics related to the discovery and development of new therapeutic entities. The journal publishes original research articles on medicinal chemistry, pharmacology, biotechnology and biopharmaceuticals, toxicology, and drug delivery, formulation, and pharmacokinetics. The journal welcomes manuscripts on new compounds and technologies in all areas focused on human therapeutics, as well as global management, health care policy, and regulatory issues involving the drug discovery and development process. In addition to full-length articles, Drug Development Research publishes Brief Reports on important and timely new research findings, as well as in-depth review articles. The journal also features periodic special thematic issues devoted to specific compound classes, new technologies, and broad aspects of drug discovery and development.