一种自适应变步长嵌入龙格-库塔对并结合Sinc配置法求解KdV方程

IF 1.4 Q2 MATHEMATICS, APPLIED
Cheng Chen , Wenting Shao
{"title":"一种自适应变步长嵌入龙格-库塔对并结合Sinc配置法求解KdV方程","authors":"Cheng Chen ,&nbsp;Wenting Shao","doi":"10.1016/j.rinam.2025.100604","DOIUrl":null,"url":null,"abstract":"<div><div>For solving the KdV equation, a novel numerical method with high order accuracy in both space and time is proposed. In the spatial direction, Sinc collocation method, which has the property of exponential convergence, is adopted. In the temporal direction, the variable stepsize Runge–Kutta-embedded pair RKq(p) is utilized. Sinc collocation method is applicable when the approximated function satisfies the exponential decay as the spatial variable tends to infinity, this characteristic is consistent with the one of the soliton solution of the KdV equation. For practical computation, a sufficiently large finite domain is taken, on which the differential matrices with respect to the discrete points are constructed. A new adaptive strategy is proposed to enhance the robustness of the variable stepsize algorithm. In the numerical experiment, four embedded pairs including RK5(4), RK6(5), RK8(7) and RK9(8) are investigated in terms of accuracy, CPU time, the minimum, average and maximum time stepsizes. The numerical results show that RK8(7) has a better performance in the computational efficiency, it achieves higher accuracy with significantly less CPU time. Besides, the KdV-Burgers equation with nonhomogeneous Dirichlet boundary condition imposed on a general interval is considered. The single-exponential transformation and double-exponential transformation are involved. We show that Sinc collocation method, enhanced by exponential transformations, provides an effective numerical approximation for this problem.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"27 ","pages":"Article 100604"},"PeriodicalIF":1.4000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A kind of adaptive variable stepsize embedded Runge–Kutta pairs coupled with the Sinc collocation method for solving the KdV equation\",\"authors\":\"Cheng Chen ,&nbsp;Wenting Shao\",\"doi\":\"10.1016/j.rinam.2025.100604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For solving the KdV equation, a novel numerical method with high order accuracy in both space and time is proposed. In the spatial direction, Sinc collocation method, which has the property of exponential convergence, is adopted. In the temporal direction, the variable stepsize Runge–Kutta-embedded pair RKq(p) is utilized. Sinc collocation method is applicable when the approximated function satisfies the exponential decay as the spatial variable tends to infinity, this characteristic is consistent with the one of the soliton solution of the KdV equation. For practical computation, a sufficiently large finite domain is taken, on which the differential matrices with respect to the discrete points are constructed. A new adaptive strategy is proposed to enhance the robustness of the variable stepsize algorithm. In the numerical experiment, four embedded pairs including RK5(4), RK6(5), RK8(7) and RK9(8) are investigated in terms of accuracy, CPU time, the minimum, average and maximum time stepsizes. The numerical results show that RK8(7) has a better performance in the computational efficiency, it achieves higher accuracy with significantly less CPU time. Besides, the KdV-Burgers equation with nonhomogeneous Dirichlet boundary condition imposed on a general interval is considered. The single-exponential transformation and double-exponential transformation are involved. We show that Sinc collocation method, enhanced by exponential transformations, provides an effective numerical approximation for this problem.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"27 \",\"pages\":\"Article 100604\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425000688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

为了求解KdV方程,提出了一种在空间和时间上都具有高阶精度的数值方法。在空间方向上,采用具有指数收敛性的Sinc配置方法。在时间方向上,采用变步长龙格-库塔嵌入对RKq(p)。当空间变量趋于无穷时,近似函数满足指数衰减时,适用Sinc配点法,这一特性与KdV方程孤子解的特性一致。在实际计算中,取一个足够大的有限域,在这个有限域上构造关于离散点的微分矩阵。为了提高变步长算法的鲁棒性,提出了一种新的自适应策略。在数值实验中,研究了RK5(4)、RK6(5)、RK8(7)和RK9(8)四个嵌入式对的精度、CPU时间、最小、平均和最大时间步长。数值结果表明,RK8(7)在计算效率上具有更好的性能,在显著减少CPU时间的情况下实现了更高的精度。此外,还考虑了一般区间上具有非齐次Dirichlet边界条件的KdV-Burgers方程。涉及到单指数变换和双指数变换。我们证明了指数变换增强的Sinc配置方法为该问题提供了有效的数值近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A kind of adaptive variable stepsize embedded Runge–Kutta pairs coupled with the Sinc collocation method for solving the KdV equation
For solving the KdV equation, a novel numerical method with high order accuracy in both space and time is proposed. In the spatial direction, Sinc collocation method, which has the property of exponential convergence, is adopted. In the temporal direction, the variable stepsize Runge–Kutta-embedded pair RKq(p) is utilized. Sinc collocation method is applicable when the approximated function satisfies the exponential decay as the spatial variable tends to infinity, this characteristic is consistent with the one of the soliton solution of the KdV equation. For practical computation, a sufficiently large finite domain is taken, on which the differential matrices with respect to the discrete points are constructed. A new adaptive strategy is proposed to enhance the robustness of the variable stepsize algorithm. In the numerical experiment, four embedded pairs including RK5(4), RK6(5), RK8(7) and RK9(8) are investigated in terms of accuracy, CPU time, the minimum, average and maximum time stepsizes. The numerical results show that RK8(7) has a better performance in the computational efficiency, it achieves higher accuracy with significantly less CPU time. Besides, the KdV-Burgers equation with nonhomogeneous Dirichlet boundary condition imposed on a general interval is considered. The single-exponential transformation and double-exponential transformation are involved. We show that Sinc collocation method, enhanced by exponential transformations, provides an effective numerical approximation for this problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信