跨尺度全耦合随机流体动力学的变分原理

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Arnaud Debussche, Etienne Mémin
{"title":"跨尺度全耦合随机流体动力学的变分原理","authors":"Arnaud Debussche,&nbsp;Etienne Mémin","doi":"10.1016/j.physd.2025.134777","DOIUrl":null,"url":null,"abstract":"<div><div>This work investigates variational frameworks for modeling stochastic dynamics in incompressible fluids, focusing on large-scale fluid behavior alongside small-scale stochastic processes. The authors aim to develop a coupled system of equations that captures both scales, using a variational principle formulated with Lagrangians defined on the full flow, and incorporating stochastic transport constraints. The approach smooths the noise term along time, leading to stochastic dynamics as a regularization parameter approaches zero. Initially, fixed noise terms are considered, resulting in a generalized stochastic Euler equation, which becomes problematic as the regularization parameter diminishes. The study then examines connections with existing stochastic frameworks and proposes a new variational principle that couples noise dynamics with large-scale fluid motion. This comprehensive framework provides a stochastic representation of large-scale dynamics while accounting for fine-scale components. Our main result is that the evolution of the small-scale velocity component is governed by a linearized Euler equation with random coefficients, influenced by large-scale transport, stretching, and pressure forcing.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"481 ","pages":"Article 134777"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational principles for fully coupled stochastic fluid dynamics across scales\",\"authors\":\"Arnaud Debussche,&nbsp;Etienne Mémin\",\"doi\":\"10.1016/j.physd.2025.134777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work investigates variational frameworks for modeling stochastic dynamics in incompressible fluids, focusing on large-scale fluid behavior alongside small-scale stochastic processes. The authors aim to develop a coupled system of equations that captures both scales, using a variational principle formulated with Lagrangians defined on the full flow, and incorporating stochastic transport constraints. The approach smooths the noise term along time, leading to stochastic dynamics as a regularization parameter approaches zero. Initially, fixed noise terms are considered, resulting in a generalized stochastic Euler equation, which becomes problematic as the regularization parameter diminishes. The study then examines connections with existing stochastic frameworks and proposes a new variational principle that couples noise dynamics with large-scale fluid motion. This comprehensive framework provides a stochastic representation of large-scale dynamics while accounting for fine-scale components. Our main result is that the evolution of the small-scale velocity component is governed by a linearized Euler equation with random coefficients, influenced by large-scale transport, stretching, and pressure forcing.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"481 \",\"pages\":\"Article 134777\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278925002544\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925002544","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

这项工作研究了不可压缩流体随机动力学建模的变分框架,重点关注大尺度流体行为和小尺度随机过程。作者的目标是开发一个耦合系统的方程,捕捉两个尺度,使用变分原理制定与拉格朗日定义在全流,并纳入随机输运约束。该方法随着时间的推移平滑噪声项,当正则化参数趋近于零时导致随机动力学。最初,考虑固定的噪声项,得到广义随机欧拉方程,随着正则化参数的减小,这个问题就出现了。然后研究了与现有随机框架的联系,并提出了一种新的变分原理,将噪声动力学与大尺度流体运动耦合起来。这个综合框架提供了大规模动力学的随机表示,同时考虑了精细尺度的成分。我们的主要结果是,小尺度速度分量的演变是由一个线性化的随机系数欧拉方程控制的,受大尺度输运、拉伸和压力的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational principles for fully coupled stochastic fluid dynamics across scales
This work investigates variational frameworks for modeling stochastic dynamics in incompressible fluids, focusing on large-scale fluid behavior alongside small-scale stochastic processes. The authors aim to develop a coupled system of equations that captures both scales, using a variational principle formulated with Lagrangians defined on the full flow, and incorporating stochastic transport constraints. The approach smooths the noise term along time, leading to stochastic dynamics as a regularization parameter approaches zero. Initially, fixed noise terms are considered, resulting in a generalized stochastic Euler equation, which becomes problematic as the regularization parameter diminishes. The study then examines connections with existing stochastic frameworks and proposes a new variational principle that couples noise dynamics with large-scale fluid motion. This comprehensive framework provides a stochastic representation of large-scale dynamics while accounting for fine-scale components. Our main result is that the evolution of the small-scale velocity component is governed by a linearized Euler equation with random coefficients, influenced by large-scale transport, stretching, and pressure forcing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信