先验辅助非配对图像去雾框架,增强现实世界朦胧场景的能见度

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Pengyang Ling , Haoxuan Wang , Huaian Chen, Yuxuan Gu, Yi Jin, Jinjin Zheng
{"title":"先验辅助非配对图像去雾框架,增强现实世界朦胧场景的能见度","authors":"Pengyang Ling ,&nbsp;Haoxuan Wang ,&nbsp;Huaian Chen,&nbsp;Yuxuan Gu,&nbsp;Yi Jin,&nbsp;Jinjin Zheng","doi":"10.1016/j.eswa.2025.128488","DOIUrl":null,"url":null,"abstract":"<div><div>To facilitate a stable dehazing performance in real scenarios, this article proposes a novel prior-assisted unpaired image dehazing framework (PAUD), which obtains superior dehazing performance directly from real unpaired hazy/clear images. Specifically, a fast haze modulation (FHM) scheme is presented, which enables fast and flexible modulation in haze concentration for effortless production of diverse hazy samples, promoting the capability in dealing with complex scenarios. Moreover, an adaptive prior matching (APM) mechanism has been developed to alleviate the risk of misguidance caused by prior failure. This mechanism performs soft constraint with prior-based transmission by estimating a pixel-wise credibility map. Extensive experiments demonstrate that the proposed method outperforms start-of-the-art methods in achieving enhanced visibility while requiring fewer parameters, providing effective and efficient visibility improvement under various hazy conditions.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"291 ","pages":"Article 128488"},"PeriodicalIF":7.5000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prior-assisted unpaired image dehazing framework for enhanced visibility in real-world hazy scenarios\",\"authors\":\"Pengyang Ling ,&nbsp;Haoxuan Wang ,&nbsp;Huaian Chen,&nbsp;Yuxuan Gu,&nbsp;Yi Jin,&nbsp;Jinjin Zheng\",\"doi\":\"10.1016/j.eswa.2025.128488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To facilitate a stable dehazing performance in real scenarios, this article proposes a novel prior-assisted unpaired image dehazing framework (PAUD), which obtains superior dehazing performance directly from real unpaired hazy/clear images. Specifically, a fast haze modulation (FHM) scheme is presented, which enables fast and flexible modulation in haze concentration for effortless production of diverse hazy samples, promoting the capability in dealing with complex scenarios. Moreover, an adaptive prior matching (APM) mechanism has been developed to alleviate the risk of misguidance caused by prior failure. This mechanism performs soft constraint with prior-based transmission by estimating a pixel-wise credibility map. Extensive experiments demonstrate that the proposed method outperforms start-of-the-art methods in achieving enhanced visibility while requiring fewer parameters, providing effective and efficient visibility improvement under various hazy conditions.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"291 \",\"pages\":\"Article 128488\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957417425021074\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425021074","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

为了在真实场景中稳定的去雾效果,本文提出了一种新的先验辅助去雾框架(PAUD),该框架直接从真实的未对的朦胧/清晰图像中获得优异的去雾效果。具体而言,提出了一种快速雾霾调制(FHM)方案,该方案可以快速灵活地调制雾霾浓度,从而轻松生产各种雾霾样品,提高了处理复杂场景的能力。此外,还提出了一种自适应先验匹配(APM)机制,以减轻由于先验失败而导致的误引导风险。该机制通过估计逐像素的可信度映射,对基于先验的传输执行软约束。大量的实验表明,该方法在需要更少参数的情况下,在提高能见度方面优于现有方法,在各种朦胧条件下提供了有效和高效的能见度提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prior-assisted unpaired image dehazing framework for enhanced visibility in real-world hazy scenarios
To facilitate a stable dehazing performance in real scenarios, this article proposes a novel prior-assisted unpaired image dehazing framework (PAUD), which obtains superior dehazing performance directly from real unpaired hazy/clear images. Specifically, a fast haze modulation (FHM) scheme is presented, which enables fast and flexible modulation in haze concentration for effortless production of diverse hazy samples, promoting the capability in dealing with complex scenarios. Moreover, an adaptive prior matching (APM) mechanism has been developed to alleviate the risk of misguidance caused by prior failure. This mechanism performs soft constraint with prior-based transmission by estimating a pixel-wise credibility map. Extensive experiments demonstrate that the proposed method outperforms start-of-the-art methods in achieving enhanced visibility while requiring fewer parameters, providing effective and efficient visibility improvement under various hazy conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信