面向增材制造产品质量跟踪的关系数据库到制造知识图谱的转换

Laiyi Li , Maolin Yang , Pingyu Jiang
{"title":"面向增材制造产品质量跟踪的关系数据库到制造知识图谱的转换","authors":"Laiyi Li ,&nbsp;Maolin Yang ,&nbsp;Pingyu Jiang","doi":"10.1016/j.procir.2025.02.172","DOIUrl":null,"url":null,"abstract":"<div><div>Product quality tracing (PQT) in additive manufacturing (AM) is a significant and complex challenge crucial for fully understanding the processes, tracing quality issues, and optimizing process technologies. Typically, tracing relies on production data from historical relational databases, but these data lack semantic information and integration with the service context of manufacturing processes. A manufacturing knowledge graph (MKG) offers a solution by adding manufacturing semantic information to production data. This paper constructed a PQT model and an MKG database for AM. The PQT model and the schema layer of the MKG originate from the swimlane flowchart. Subsequently, a relational database was mapped to instantiate the MKG, and the natural language model was used to complete it. This integration constructs a PQT model and an MKG database centered on manufacturing resources, events, data, and states. The tracing subgraphs extracted from the MKG database demonstrate that this method effectively traces manufacturing process issues and anomalies. The proposed method provides a viable database and method for PQT in AM, enabling comprehensive tracing of manufacturing processes, identifying quality anomalies, and providing potential cause references for AM experts.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":"134 ","pages":"Pages 544-549"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Converting Relational Databases to Manufacturing Knowledge Graph for Product Quality Tracing in Additive Manufacturing\",\"authors\":\"Laiyi Li ,&nbsp;Maolin Yang ,&nbsp;Pingyu Jiang\",\"doi\":\"10.1016/j.procir.2025.02.172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Product quality tracing (PQT) in additive manufacturing (AM) is a significant and complex challenge crucial for fully understanding the processes, tracing quality issues, and optimizing process technologies. Typically, tracing relies on production data from historical relational databases, but these data lack semantic information and integration with the service context of manufacturing processes. A manufacturing knowledge graph (MKG) offers a solution by adding manufacturing semantic information to production data. This paper constructed a PQT model and an MKG database for AM. The PQT model and the schema layer of the MKG originate from the swimlane flowchart. Subsequently, a relational database was mapped to instantiate the MKG, and the natural language model was used to complete it. This integration constructs a PQT model and an MKG database centered on manufacturing resources, events, data, and states. The tracing subgraphs extracted from the MKG database demonstrate that this method effectively traces manufacturing process issues and anomalies. The proposed method provides a viable database and method for PQT in AM, enabling comprehensive tracing of manufacturing processes, identifying quality anomalies, and providing potential cause references for AM experts.</div></div>\",\"PeriodicalId\":20535,\"journal\":{\"name\":\"Procedia CIRP\",\"volume\":\"134 \",\"pages\":\"Pages 544-549\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia CIRP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212827125005414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827125005414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

增材制造(AM)中的产品质量跟踪(PQT)是一项重大而复杂的挑战,对于充分理解工艺、跟踪质量问题和优化工艺技术至关重要。通常,跟踪依赖于历史关系数据库中的生产数据,但是这些数据缺乏语义信息以及与制造过程的服务上下文的集成。制造知识图(MKG)通过向生产数据中添加制造语义信息提供了一种解决方案。本文建立了面向增材制造的PQT模型和MKG数据库。PQT模型和MKG的模式层起源于泳道流程图。随后,映射一个关系数据库来实例化MKG,并使用自然语言模型来完成它。这种集成构建了一个PQT模型和一个以制造资源、事件、数据和状态为中心的MKG数据库。从MKG数据库中提取的跟踪子图表明,该方法可以有效地跟踪制造过程中的问题和异常。提出的方法为增材制造中的PQT提供了一个可行的数据库和方法,可以全面跟踪制造过程,识别质量异常,并为增材制造专家提供潜在原因参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Converting Relational Databases to Manufacturing Knowledge Graph for Product Quality Tracing in Additive Manufacturing
Product quality tracing (PQT) in additive manufacturing (AM) is a significant and complex challenge crucial for fully understanding the processes, tracing quality issues, and optimizing process technologies. Typically, tracing relies on production data from historical relational databases, but these data lack semantic information and integration with the service context of manufacturing processes. A manufacturing knowledge graph (MKG) offers a solution by adding manufacturing semantic information to production data. This paper constructed a PQT model and an MKG database for AM. The PQT model and the schema layer of the MKG originate from the swimlane flowchart. Subsequently, a relational database was mapped to instantiate the MKG, and the natural language model was used to complete it. This integration constructs a PQT model and an MKG database centered on manufacturing resources, events, data, and states. The tracing subgraphs extracted from the MKG database demonstrate that this method effectively traces manufacturing process issues and anomalies. The proposed method provides a viable database and method for PQT in AM, enabling comprehensive tracing of manufacturing processes, identifying quality anomalies, and providing potential cause references for AM experts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信