电池生产中混合过程的正常行为建模

Antje Fitzner , Thomas Ackermann , Melanie Lübke
{"title":"电池生产中混合过程的正常行为建模","authors":"Antje Fitzner ,&nbsp;Thomas Ackermann ,&nbsp;Melanie Lübke","doi":"10.1016/j.procir.2025.02.171","DOIUrl":null,"url":null,"abstract":"<div><div>The rising global demand for lithium-ion battery cells (LIBs) underscores the need for efficient production processes. Predictive maintenance (PdM) plays a crucial role by transforming data into insights, enhancing equipment reliability. Normal Behavior Modelling (NBM) enables anomaly detection, aiming to improve operational efficiency and product quality in this complex manufacturing environment.</div><div>An NBM of the extruder is developed using real production data for the electrode mixing process. The model captures the normal behavior of the machine by predicting the pressure as a measure of the system state of the machine. Identifed anomalies are highlighted and can later be used for a full PdM. The results will enhance the monitoring of the LIB production line and prevent unintended downtimes of machines.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":"134 ","pages":"Pages 520-525"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normal Behavior Modelling for the Mixing Process in Battery Cell Production\",\"authors\":\"Antje Fitzner ,&nbsp;Thomas Ackermann ,&nbsp;Melanie Lübke\",\"doi\":\"10.1016/j.procir.2025.02.171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rising global demand for lithium-ion battery cells (LIBs) underscores the need for efficient production processes. Predictive maintenance (PdM) plays a crucial role by transforming data into insights, enhancing equipment reliability. Normal Behavior Modelling (NBM) enables anomaly detection, aiming to improve operational efficiency and product quality in this complex manufacturing environment.</div><div>An NBM of the extruder is developed using real production data for the electrode mixing process. The model captures the normal behavior of the machine by predicting the pressure as a measure of the system state of the machine. Identifed anomalies are highlighted and can later be used for a full PdM. The results will enhance the monitoring of the LIB production line and prevent unintended downtimes of machines.</div></div>\",\"PeriodicalId\":20535,\"journal\":{\"name\":\"Procedia CIRP\",\"volume\":\"134 \",\"pages\":\"Pages 520-525\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia CIRP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212827125005372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827125005372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全球对锂离子电池(LIBs)需求的不断增长凸显了对高效生产工艺的需求。预测性维护(PdM)通过将数据转化为见解,提高设备可靠性,发挥着至关重要的作用。正常行为建模(NBM)可以实现异常检测,旨在提高复杂制造环境中的操作效率和产品质量。根据电极混合过程的实际生产数据,建立了挤出机的数学模型。该模型通过预测压力作为机器系统状态的度量来捕获机器的正常行为。识别出的异常会被突出显示,以后可以用于完整的PdM。结果将加强对LIB生产线的监控,并防止机器意外停机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normal Behavior Modelling for the Mixing Process in Battery Cell Production
The rising global demand for lithium-ion battery cells (LIBs) underscores the need for efficient production processes. Predictive maintenance (PdM) plays a crucial role by transforming data into insights, enhancing equipment reliability. Normal Behavior Modelling (NBM) enables anomaly detection, aiming to improve operational efficiency and product quality in this complex manufacturing environment.
An NBM of the extruder is developed using real production data for the electrode mixing process. The model captures the normal behavior of the machine by predicting the pressure as a measure of the system state of the machine. Identifed anomalies are highlighted and can later be used for a full PdM. The results will enhance the monitoring of the LIB production line and prevent unintended downtimes of machines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信