基于大语言模型的认知辅助系统装配指令生成的改进

Benedikt Kelm , Paul Hubert Haas , Simon Jochum , Lennard Margies , Rainer Müller
{"title":"基于大语言模型的认知辅助系统装配指令生成的改进","authors":"Benedikt Kelm ,&nbsp;Paul Hubert Haas ,&nbsp;Simon Jochum ,&nbsp;Lennard Margies ,&nbsp;Rainer Müller","doi":"10.1016/j.procir.2025.03.010","DOIUrl":null,"url":null,"abstract":"<div><div>Cognitive Assistance Systems enhance manual assembly by shortening learning cycles and allowing workers to handle a wider range of products. However, generating assembly instructions remains time-consuming, particularly in environments with high product variability. This paper presents a novel approach to automate and streamline this process using MTM-based standardized instruction texts and Large Language Models via the OpenAI API. By deriving instructions from MTM analyses, a unified syntax and structure can be realized, improving consistency and efficiency. The integration of GTP-4o further enables the automatic generation of context-specific warnings and error notifications. Model fine-tuning and prompt engineering play a pivotal role in this approach, allowing the generation of precise instructions. The evaluation, based on the BLEU and METEOR scores, focuses on the assessment of the technical functionality and the quality of the generated outputs and shows promising results that highlight the potential of this approach for improving the automated generation of standardized assembly instructions for Cognitive Assistance Systems.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":"134 ","pages":"Pages 7-12"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Assembly Instruction Generation for Cognitive Assistance Systems with Large Language Models\",\"authors\":\"Benedikt Kelm ,&nbsp;Paul Hubert Haas ,&nbsp;Simon Jochum ,&nbsp;Lennard Margies ,&nbsp;Rainer Müller\",\"doi\":\"10.1016/j.procir.2025.03.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cognitive Assistance Systems enhance manual assembly by shortening learning cycles and allowing workers to handle a wider range of products. However, generating assembly instructions remains time-consuming, particularly in environments with high product variability. This paper presents a novel approach to automate and streamline this process using MTM-based standardized instruction texts and Large Language Models via the OpenAI API. By deriving instructions from MTM analyses, a unified syntax and structure can be realized, improving consistency and efficiency. The integration of GTP-4o further enables the automatic generation of context-specific warnings and error notifications. Model fine-tuning and prompt engineering play a pivotal role in this approach, allowing the generation of precise instructions. The evaluation, based on the BLEU and METEOR scores, focuses on the assessment of the technical functionality and the quality of the generated outputs and shows promising results that highlight the potential of this approach for improving the automated generation of standardized assembly instructions for Cognitive Assistance Systems.</div></div>\",\"PeriodicalId\":20535,\"journal\":{\"name\":\"Procedia CIRP\",\"volume\":\"134 \",\"pages\":\"Pages 7-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia CIRP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212827125004512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827125004512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

认知辅助系统通过缩短学习周期和允许工人处理更广泛的产品来增强手工组装。然而,生成组装指令仍然很耗时,特别是在产品高度可变性的环境中。本文提出了一种新颖的方法,通过OpenAI API使用基于mtm的标准化指令文本和大型语言模型来自动化和简化这一过程。通过从MTM分析中派生指令,可以实现统一的语法和结构,提高一致性和效率。gtp - 40的集成进一步支持自动生成特定于上下文的警告和错误通知。模型微调和提示工程在这种方法中起着关键作用,允许生成精确的指令。基于BLEU和METEOR分数的评估侧重于评估技术功能和生成输出的质量,并显示出有希望的结果,突出了这种方法在改进认知辅助系统的标准化装配指令自动生成方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Assembly Instruction Generation for Cognitive Assistance Systems with Large Language Models
Cognitive Assistance Systems enhance manual assembly by shortening learning cycles and allowing workers to handle a wider range of products. However, generating assembly instructions remains time-consuming, particularly in environments with high product variability. This paper presents a novel approach to automate and streamline this process using MTM-based standardized instruction texts and Large Language Models via the OpenAI API. By deriving instructions from MTM analyses, a unified syntax and structure can be realized, improving consistency and efficiency. The integration of GTP-4o further enables the automatic generation of context-specific warnings and error notifications. Model fine-tuning and prompt engineering play a pivotal role in this approach, allowing the generation of precise instructions. The evaluation, based on the BLEU and METEOR scores, focuses on the assessment of the technical functionality and the quality of the generated outputs and shows promising results that highlight the potential of this approach for improving the automated generation of standardized assembly instructions for Cognitive Assistance Systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信