{"title":"Silet-Tin Felki地区的综合遥感和地球物理研究:阿尔及利亚南部Hoggar地盾泛非构造和岩浆演化的见解","authors":"Narimene Berrahmane , Abderrahmane Bendaoud , El-Hocine Fettous , Sid Ali Doukkari , Takfarinas Lamri , Basem Zoheir , Mohamed Hamoudi","doi":"10.1016/j.chemer.2024.126242","DOIUrl":null,"url":null,"abstract":"<div><div>The Silet-Tin Felki area, located within the Tuareg Shield, represents a key area for understanding the Pan-African orogeny and associated magmatic processes. This study employs a comprehensive approach, integrating remote sensing, airborne geophysics, and the previously available geochemical data to produce an enhanced lithological and structural map of the area. Remote sensing methods, including optimal RGB band combinations and principal component analysis (PCA), effectively distinguish between volcanic, granitoid, and metamorphic units. High-resolution magnetic and gamma-ray spectrometry further elucidate lithological boundaries and tectonic features, including significant shear zones. The study identifies two distinct lithological blocks, separated by the 4°50′E lithospheric shear zone: the LATEA-Aouilène block to the east, featuring Neoproterozoic high-grade metamorphic rocks, and the Pharusien Belt to the west, characterized by Neoproterozoic volcanic arc and accretionary wedge complexes. The Tonian TTG batholiths in the northern Silet region display moderate radioactivity and magnetic signatures, contrasting with the highly radiogenic post-orogenic granites.</div><div>Key geodynamic features, such as mafic-ultramafic intrusions associated with a back-arc basin, were delineated, refining the regional geological model and enhancing the understanding of magmatic evolution and tectonic interactions. The integration of gamma-ray spectrometry and aeromagnetic data enabled the detailed mapping of pre-, <em>syn</em>-, and post-collisional granitoids, including transitional TTG suites, and revealed complex tectonic history with significant shear zones and lineaments. This updated geological framework provides critical insights for future exploration and underscores the need for further geochronological and petrological research to fully comprehend the tectono-magmatic evolution of this part of the Tuareg Shield.</div></div>","PeriodicalId":55973,"journal":{"name":"Chemie Der Erde-Geochemistry","volume":"85 2","pages":"Article 126242"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated remote sensing and geophysical studies of the Silet-Tin Felki area: Insights into the Pan-African tectonics and magmatic evolution of the Hoggar Shield, Southern Algeria\",\"authors\":\"Narimene Berrahmane , Abderrahmane Bendaoud , El-Hocine Fettous , Sid Ali Doukkari , Takfarinas Lamri , Basem Zoheir , Mohamed Hamoudi\",\"doi\":\"10.1016/j.chemer.2024.126242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Silet-Tin Felki area, located within the Tuareg Shield, represents a key area for understanding the Pan-African orogeny and associated magmatic processes. This study employs a comprehensive approach, integrating remote sensing, airborne geophysics, and the previously available geochemical data to produce an enhanced lithological and structural map of the area. Remote sensing methods, including optimal RGB band combinations and principal component analysis (PCA), effectively distinguish between volcanic, granitoid, and metamorphic units. High-resolution magnetic and gamma-ray spectrometry further elucidate lithological boundaries and tectonic features, including significant shear zones. The study identifies two distinct lithological blocks, separated by the 4°50′E lithospheric shear zone: the LATEA-Aouilène block to the east, featuring Neoproterozoic high-grade metamorphic rocks, and the Pharusien Belt to the west, characterized by Neoproterozoic volcanic arc and accretionary wedge complexes. The Tonian TTG batholiths in the northern Silet region display moderate radioactivity and magnetic signatures, contrasting with the highly radiogenic post-orogenic granites.</div><div>Key geodynamic features, such as mafic-ultramafic intrusions associated with a back-arc basin, were delineated, refining the regional geological model and enhancing the understanding of magmatic evolution and tectonic interactions. The integration of gamma-ray spectrometry and aeromagnetic data enabled the detailed mapping of pre-, <em>syn</em>-, and post-collisional granitoids, including transitional TTG suites, and revealed complex tectonic history with significant shear zones and lineaments. This updated geological framework provides critical insights for future exploration and underscores the need for further geochronological and petrological research to fully comprehend the tectono-magmatic evolution of this part of the Tuareg Shield.</div></div>\",\"PeriodicalId\":55973,\"journal\":{\"name\":\"Chemie Der Erde-Geochemistry\",\"volume\":\"85 2\",\"pages\":\"Article 126242\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemie Der Erde-Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009281924001673\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemie Der Erde-Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009281924001673","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Integrated remote sensing and geophysical studies of the Silet-Tin Felki area: Insights into the Pan-African tectonics and magmatic evolution of the Hoggar Shield, Southern Algeria
The Silet-Tin Felki area, located within the Tuareg Shield, represents a key area for understanding the Pan-African orogeny and associated magmatic processes. This study employs a comprehensive approach, integrating remote sensing, airborne geophysics, and the previously available geochemical data to produce an enhanced lithological and structural map of the area. Remote sensing methods, including optimal RGB band combinations and principal component analysis (PCA), effectively distinguish between volcanic, granitoid, and metamorphic units. High-resolution magnetic and gamma-ray spectrometry further elucidate lithological boundaries and tectonic features, including significant shear zones. The study identifies two distinct lithological blocks, separated by the 4°50′E lithospheric shear zone: the LATEA-Aouilène block to the east, featuring Neoproterozoic high-grade metamorphic rocks, and the Pharusien Belt to the west, characterized by Neoproterozoic volcanic arc and accretionary wedge complexes. The Tonian TTG batholiths in the northern Silet region display moderate radioactivity and magnetic signatures, contrasting with the highly radiogenic post-orogenic granites.
Key geodynamic features, such as mafic-ultramafic intrusions associated with a back-arc basin, were delineated, refining the regional geological model and enhancing the understanding of magmatic evolution and tectonic interactions. The integration of gamma-ray spectrometry and aeromagnetic data enabled the detailed mapping of pre-, syn-, and post-collisional granitoids, including transitional TTG suites, and revealed complex tectonic history with significant shear zones and lineaments. This updated geological framework provides critical insights for future exploration and underscores the need for further geochronological and petrological research to fully comprehend the tectono-magmatic evolution of this part of the Tuareg Shield.
期刊介绍:
GEOCHEMISTRY was founded as Chemie der Erde 1914 in Jena, and, hence, is one of the oldest journals for geochemistry-related topics.
GEOCHEMISTRY (formerly Chemie der Erde / Geochemistry) publishes original research papers, short communications, reviews of selected topics, and high-class invited review articles addressed at broad geosciences audience. Publications dealing with interdisciplinary questions are particularly welcome. Young scientists are especially encouraged to submit their work. Contributions will be published exclusively in English. The journal, through very personalized consultation and its worldwide distribution, offers entry into the world of international scientific communication, and promotes interdisciplinary discussion on chemical problems in a broad spectrum of geosciences.
The following topics are covered by the expertise of the members of the editorial board (see below):
-cosmochemistry, meteoritics-
igneous, metamorphic, and sedimentary petrology-
volcanology-
low & high temperature geochemistry-
experimental - theoretical - field related studies-
mineralogy - crystallography-
environmental geosciences-
archaeometry