Ismahen Chaouche , Jan Cempírek , Mohamed Talbi , Riad Ben El Khaznadji , Nadjet Ait Taleb , Yves Fuchs
{"title":"阿尔及利亚南部Silet地体中与造山带金矿相关的电气石:热液结晶过程中组成和氧化还原状态的演化","authors":"Ismahen Chaouche , Jan Cempírek , Mohamed Talbi , Riad Ben El Khaznadji , Nadjet Ait Taleb , Yves Fuchs","doi":"10.1016/j.chemer.2025.126259","DOIUrl":null,"url":null,"abstract":"<div><div>In the Silet terrane (western Hoggar, southern Algeria), gold occurs in association with tourmaline in quartz veins. In the Assouf Mellen, Seldrar, and Idreksi occurrences, gold-bearing veins cut diorite and granodiorite complexes of the pre-orogenic Tonalite-Trondhjemite-Granodiorite group (868–840 Ma). These veins trend dominantly in the N-S, NE-SW, and NW-SE directions, and are preferentially developed at the intersection zones of secondary NE-SW and NW-SE fault splays off the main 4°30′ fault zone (Iskel Shear Zone). Free gold is present as inclusions disseminated in quartz and tourmaline, and as fissure-fillings in deformed tourmaline crystals. Gold was also found as inclusions in chalcopyrite and in iron oxides.</div><div>Based on the mineral chemistry, the tourmaline belongs to the alkali group and represents the schorl–dravite and foitite–oxy-foitite series and shows evolution trends to bosiite/povondraite; tourmaline components from the calcic group (lucchesiite, magnesio-lucchesiite) are minor only. Tourmaline in Silet was likely formed as Al-deficient Fe<sup>3+</sup>-enriched schorl (Tur I), later recrystallized (Tur II) and enriched in Mg and Al with higher X-site vacancy (Mg-rich schorl to Fe-rich dravite). In the Seldrar occurrences (middle part of Silet terrane), gold is associated with tourmaline with high initial Fe<sup>3+</sup>-contents (Tur I) while the assemblage of the later Tur II is barren. The evolution towards Fe<sup>3+</sup>-rich schorl may be explained as a result of more oxidizing conditions in the late stage of formation of the mineralized quartz veins. Part of gold was remobilized by low-temperature weathering processes.</div></div>","PeriodicalId":55973,"journal":{"name":"Chemie Der Erde-Geochemistry","volume":"85 2","pages":"Article 126259"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tourmaline associated with orogenic gold occurrences in the Silet terrane, South Algeria: Evolution of composition and redox state during hydrothermal crystallization\",\"authors\":\"Ismahen Chaouche , Jan Cempírek , Mohamed Talbi , Riad Ben El Khaznadji , Nadjet Ait Taleb , Yves Fuchs\",\"doi\":\"10.1016/j.chemer.2025.126259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the Silet terrane (western Hoggar, southern Algeria), gold occurs in association with tourmaline in quartz veins. In the Assouf Mellen, Seldrar, and Idreksi occurrences, gold-bearing veins cut diorite and granodiorite complexes of the pre-orogenic Tonalite-Trondhjemite-Granodiorite group (868–840 Ma). These veins trend dominantly in the N-S, NE-SW, and NW-SE directions, and are preferentially developed at the intersection zones of secondary NE-SW and NW-SE fault splays off the main 4°30′ fault zone (Iskel Shear Zone). Free gold is present as inclusions disseminated in quartz and tourmaline, and as fissure-fillings in deformed tourmaline crystals. Gold was also found as inclusions in chalcopyrite and in iron oxides.</div><div>Based on the mineral chemistry, the tourmaline belongs to the alkali group and represents the schorl–dravite and foitite–oxy-foitite series and shows evolution trends to bosiite/povondraite; tourmaline components from the calcic group (lucchesiite, magnesio-lucchesiite) are minor only. Tourmaline in Silet was likely formed as Al-deficient Fe<sup>3+</sup>-enriched schorl (Tur I), later recrystallized (Tur II) and enriched in Mg and Al with higher X-site vacancy (Mg-rich schorl to Fe-rich dravite). In the Seldrar occurrences (middle part of Silet terrane), gold is associated with tourmaline with high initial Fe<sup>3+</sup>-contents (Tur I) while the assemblage of the later Tur II is barren. The evolution towards Fe<sup>3+</sup>-rich schorl may be explained as a result of more oxidizing conditions in the late stage of formation of the mineralized quartz veins. Part of gold was remobilized by low-temperature weathering processes.</div></div>\",\"PeriodicalId\":55973,\"journal\":{\"name\":\"Chemie Der Erde-Geochemistry\",\"volume\":\"85 2\",\"pages\":\"Article 126259\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemie Der Erde-Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009281925000145\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemie Der Erde-Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009281925000145","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Tourmaline associated with orogenic gold occurrences in the Silet terrane, South Algeria: Evolution of composition and redox state during hydrothermal crystallization
In the Silet terrane (western Hoggar, southern Algeria), gold occurs in association with tourmaline in quartz veins. In the Assouf Mellen, Seldrar, and Idreksi occurrences, gold-bearing veins cut diorite and granodiorite complexes of the pre-orogenic Tonalite-Trondhjemite-Granodiorite group (868–840 Ma). These veins trend dominantly in the N-S, NE-SW, and NW-SE directions, and are preferentially developed at the intersection zones of secondary NE-SW and NW-SE fault splays off the main 4°30′ fault zone (Iskel Shear Zone). Free gold is present as inclusions disseminated in quartz and tourmaline, and as fissure-fillings in deformed tourmaline crystals. Gold was also found as inclusions in chalcopyrite and in iron oxides.
Based on the mineral chemistry, the tourmaline belongs to the alkali group and represents the schorl–dravite and foitite–oxy-foitite series and shows evolution trends to bosiite/povondraite; tourmaline components from the calcic group (lucchesiite, magnesio-lucchesiite) are minor only. Tourmaline in Silet was likely formed as Al-deficient Fe3+-enriched schorl (Tur I), later recrystallized (Tur II) and enriched in Mg and Al with higher X-site vacancy (Mg-rich schorl to Fe-rich dravite). In the Seldrar occurrences (middle part of Silet terrane), gold is associated with tourmaline with high initial Fe3+-contents (Tur I) while the assemblage of the later Tur II is barren. The evolution towards Fe3+-rich schorl may be explained as a result of more oxidizing conditions in the late stage of formation of the mineralized quartz veins. Part of gold was remobilized by low-temperature weathering processes.
期刊介绍:
GEOCHEMISTRY was founded as Chemie der Erde 1914 in Jena, and, hence, is one of the oldest journals for geochemistry-related topics.
GEOCHEMISTRY (formerly Chemie der Erde / Geochemistry) publishes original research papers, short communications, reviews of selected topics, and high-class invited review articles addressed at broad geosciences audience. Publications dealing with interdisciplinary questions are particularly welcome. Young scientists are especially encouraged to submit their work. Contributions will be published exclusively in English. The journal, through very personalized consultation and its worldwide distribution, offers entry into the world of international scientific communication, and promotes interdisciplinary discussion on chemical problems in a broad spectrum of geosciences.
The following topics are covered by the expertise of the members of the editorial board (see below):
-cosmochemistry, meteoritics-
igneous, metamorphic, and sedimentary petrology-
volcanology-
low & high temperature geochemistry-
experimental - theoretical - field related studies-
mineralogy - crystallography-
environmental geosciences-
archaeometry