{"title":"全氟和多氟烷基物质抑制巨噬细胞替代激活,破坏肝脏脂质代谢","authors":"Lijuan You, Xiaohong Wang, Yuan Zhi, Huiling Wang, Zhisen Zhuang, Jing Yang, Qiannan Zhang, Hailin Shang, Yongning Li, Yi Wan, Xudong Jia and Hui Yang*, ","doi":"10.1021/acs.chemrestox.5c0006610.1021/acs.chemrestox.5c00066","DOIUrl":null,"url":null,"abstract":"<p >Per- and polyfluoroalkyl substances (PFAS) are pervasive environmental pollutants with diverse toxic effects (e.g., hepatotoxicity and metabolism disorder). Macrophages played a key role in metabolic response; however, the effect of macrophage on PFAS-induced toxicity and the underlying mechanisms remain poorly understood. In this study, we constructed a high-content cell model by utilizing the activation and differentiation of human THP-1 monocytes into alternative activation of macrophages, enabling rapid quantitative screening of numerous PFAS. We applied the cell model to screen 10 PFASs and identified that PFOA and PFUnDA significantly suppressed alternative activation of macrophages by disrupting the PPAR signaling pathway. Oral exposure to PFOA and PFUnDA in WT mice also significantly impaired alternative activation of macrophages in the liver and induced hepatocyte hypertrophy, liver dysfunction, and systemic lipid metabolism disorders. Moreover, macrophage-specific knockout of PPARγ exacerbated PFOA and PFUnDA-induced suppression of macrophage alternative activation and subsequent hepatotoxicity. Activation balance between PPARα and PPARγ may be a critical factor by PFOA and PFUnDA to affect the alternative activation of macrophage. These findings highlight the immunometabolism regulatory role of macrophage activation in PFAS-induced hepatotoxicity in humans.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":"38 6","pages":"1091–1102 1091–1102"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Per- and Polyfluoroalkyl Substances Suppress Macrophage Alternative Activation to Disrupt Hepatic Lipid Metabolism\",\"authors\":\"Lijuan You, Xiaohong Wang, Yuan Zhi, Huiling Wang, Zhisen Zhuang, Jing Yang, Qiannan Zhang, Hailin Shang, Yongning Li, Yi Wan, Xudong Jia and Hui Yang*, \",\"doi\":\"10.1021/acs.chemrestox.5c0006610.1021/acs.chemrestox.5c00066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Per- and polyfluoroalkyl substances (PFAS) are pervasive environmental pollutants with diverse toxic effects (e.g., hepatotoxicity and metabolism disorder). Macrophages played a key role in metabolic response; however, the effect of macrophage on PFAS-induced toxicity and the underlying mechanisms remain poorly understood. In this study, we constructed a high-content cell model by utilizing the activation and differentiation of human THP-1 monocytes into alternative activation of macrophages, enabling rapid quantitative screening of numerous PFAS. We applied the cell model to screen 10 PFASs and identified that PFOA and PFUnDA significantly suppressed alternative activation of macrophages by disrupting the PPAR signaling pathway. Oral exposure to PFOA and PFUnDA in WT mice also significantly impaired alternative activation of macrophages in the liver and induced hepatocyte hypertrophy, liver dysfunction, and systemic lipid metabolism disorders. Moreover, macrophage-specific knockout of PPARγ exacerbated PFOA and PFUnDA-induced suppression of macrophage alternative activation and subsequent hepatotoxicity. Activation balance between PPARα and PPARγ may be a critical factor by PFOA and PFUnDA to affect the alternative activation of macrophage. These findings highlight the immunometabolism regulatory role of macrophage activation in PFAS-induced hepatotoxicity in humans.</p>\",\"PeriodicalId\":31,\"journal\":{\"name\":\"Chemical Research in Toxicology\",\"volume\":\"38 6\",\"pages\":\"1091–1102 1091–1102\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Research in Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemrestox.5c00066\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemrestox.5c00066","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Per- and Polyfluoroalkyl Substances Suppress Macrophage Alternative Activation to Disrupt Hepatic Lipid Metabolism
Per- and polyfluoroalkyl substances (PFAS) are pervasive environmental pollutants with diverse toxic effects (e.g., hepatotoxicity and metabolism disorder). Macrophages played a key role in metabolic response; however, the effect of macrophage on PFAS-induced toxicity and the underlying mechanisms remain poorly understood. In this study, we constructed a high-content cell model by utilizing the activation and differentiation of human THP-1 monocytes into alternative activation of macrophages, enabling rapid quantitative screening of numerous PFAS. We applied the cell model to screen 10 PFASs and identified that PFOA and PFUnDA significantly suppressed alternative activation of macrophages by disrupting the PPAR signaling pathway. Oral exposure to PFOA and PFUnDA in WT mice also significantly impaired alternative activation of macrophages in the liver and induced hepatocyte hypertrophy, liver dysfunction, and systemic lipid metabolism disorders. Moreover, macrophage-specific knockout of PPARγ exacerbated PFOA and PFUnDA-induced suppression of macrophage alternative activation and subsequent hepatotoxicity. Activation balance between PPARα and PPARγ may be a critical factor by PFOA and PFUnDA to affect the alternative activation of macrophage. These findings highlight the immunometabolism regulatory role of macrophage activation in PFAS-induced hepatotoxicity in humans.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.