Ruba Nasser , Ahmed Alagha , Shakti Singh , Rabeb Mizouni , Hadi Otrok , Jamal Bentahar
{"title":"使用生成对抗网络的移动群体感知中基于中毒行为的工人选择","authors":"Ruba Nasser , Ahmed Alagha , Shakti Singh , Rabeb Mizouni , Hadi Otrok , Jamal Bentahar","doi":"10.1016/j.jnca.2025.104236","DOIUrl":null,"url":null,"abstract":"<div><div>With the widespread adoption of Artificial intelligence (AI), AI-based tools and components are becoming omnipresent in today’s solutions. However, these components and tools are posing a significant threat when it comes to adversarial attacks. Mobile Crowdsensing (MCS) is a sensing paradigm that leverages the collective participation of workers and their smart devices to collect data. One of the key challenges faced at the selection stage is ensuring task completion due to workers’ varying behavior. AI has been utilized to tackle this challenge by building unique models for each worker to predict their behavior. However, the integration of AI into the system introduces vulnerabilities that can be exploited by malicious insiders to reduce the revenue obtained by victim workers. This work proposes an adversarial attack targeting behavioral-based selection models in MCS. The proposed attack leverages Generative Adversarial Networks (GANs) to generate poisoning points that can mislead the models during the training stage without being detected. This way, the potential damage introduced by GANs on worker selection in MCS can be anticipated. Simulation results using a real-life dataset show the effectiveness of the proposed attack in compromising the victim workers’ model and evading detection by an outlier detector, compared to a benchmark. In addition, the impact of the attack on reducing the payment obtained by victim workers is evaluated.</div></div>","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"242 ","pages":"Article 104236"},"PeriodicalIF":7.7000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poisoning behavioral-based worker selection in mobile crowdsensing using generative adversarial networks\",\"authors\":\"Ruba Nasser , Ahmed Alagha , Shakti Singh , Rabeb Mizouni , Hadi Otrok , Jamal Bentahar\",\"doi\":\"10.1016/j.jnca.2025.104236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the widespread adoption of Artificial intelligence (AI), AI-based tools and components are becoming omnipresent in today’s solutions. However, these components and tools are posing a significant threat when it comes to adversarial attacks. Mobile Crowdsensing (MCS) is a sensing paradigm that leverages the collective participation of workers and their smart devices to collect data. One of the key challenges faced at the selection stage is ensuring task completion due to workers’ varying behavior. AI has been utilized to tackle this challenge by building unique models for each worker to predict their behavior. However, the integration of AI into the system introduces vulnerabilities that can be exploited by malicious insiders to reduce the revenue obtained by victim workers. This work proposes an adversarial attack targeting behavioral-based selection models in MCS. The proposed attack leverages Generative Adversarial Networks (GANs) to generate poisoning points that can mislead the models during the training stage without being detected. This way, the potential damage introduced by GANs on worker selection in MCS can be anticipated. Simulation results using a real-life dataset show the effectiveness of the proposed attack in compromising the victim workers’ model and evading detection by an outlier detector, compared to a benchmark. In addition, the impact of the attack on reducing the payment obtained by victim workers is evaluated.</div></div>\",\"PeriodicalId\":54784,\"journal\":{\"name\":\"Journal of Network and Computer Applications\",\"volume\":\"242 \",\"pages\":\"Article 104236\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Network and Computer Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S108480452500133X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S108480452500133X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Poisoning behavioral-based worker selection in mobile crowdsensing using generative adversarial networks
With the widespread adoption of Artificial intelligence (AI), AI-based tools and components are becoming omnipresent in today’s solutions. However, these components and tools are posing a significant threat when it comes to adversarial attacks. Mobile Crowdsensing (MCS) is a sensing paradigm that leverages the collective participation of workers and their smart devices to collect data. One of the key challenges faced at the selection stage is ensuring task completion due to workers’ varying behavior. AI has been utilized to tackle this challenge by building unique models for each worker to predict their behavior. However, the integration of AI into the system introduces vulnerabilities that can be exploited by malicious insiders to reduce the revenue obtained by victim workers. This work proposes an adversarial attack targeting behavioral-based selection models in MCS. The proposed attack leverages Generative Adversarial Networks (GANs) to generate poisoning points that can mislead the models during the training stage without being detected. This way, the potential damage introduced by GANs on worker selection in MCS can be anticipated. Simulation results using a real-life dataset show the effectiveness of the proposed attack in compromising the victim workers’ model and evading detection by an outlier detector, compared to a benchmark. In addition, the impact of the attack on reducing the payment obtained by victim workers is evaluated.
期刊介绍:
The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.