可视化:使用llm的可视化设计师的自动化设计反馈。

IF 6.5
Sungbok Shin, Sanghyun Hong, Niklas Elmqvist
{"title":"可视化:使用llm的可视化设计师的自动化设计反馈。","authors":"Sungbok Shin, Sanghyun Hong, Niklas Elmqvist","doi":"10.1109/TVCG.2025.3579700","DOIUrl":null,"url":null,"abstract":"<p><p>Interactive visualization editors empower users to author visualizations without writing code, but do not provide guidance on the art and craft of effective visual communication. In this paper, we explore the potential of using an off-the-shelf large language models (LLMs) to provide actionable and customized feedback to visualization designers. Our implementation, Visualizationary, demonstrates how ChatGPT can be used for this purpose through two key components: a preamble of visualization design guidelines and a suite of perceptual filters that extract salient metrics from a visualization image. We present findings from a longitudinal user study involving 13 visualization designers-6 novices, 4 intermediates, and 3 experts-who authored a new visualization from scratch over several days. Our results indicate that providing guidance in natural language via an LLM can aid even seasoned designers in refining their visualizations. All our supplemental materials are available at https://osf.io/v7hu8.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualizationary: Automating Design Feedback for Visualization Designers Using LLMs.\",\"authors\":\"Sungbok Shin, Sanghyun Hong, Niklas Elmqvist\",\"doi\":\"10.1109/TVCG.2025.3579700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interactive visualization editors empower users to author visualizations without writing code, but do not provide guidance on the art and craft of effective visual communication. In this paper, we explore the potential of using an off-the-shelf large language models (LLMs) to provide actionable and customized feedback to visualization designers. Our implementation, Visualizationary, demonstrates how ChatGPT can be used for this purpose through two key components: a preamble of visualization design guidelines and a suite of perceptual filters that extract salient metrics from a visualization image. We present findings from a longitudinal user study involving 13 visualization designers-6 novices, 4 intermediates, and 3 experts-who authored a new visualization from scratch over several days. Our results indicate that providing guidance in natural language via an LLM can aid even seasoned designers in refining their visualizations. All our supplemental materials are available at https://osf.io/v7hu8.</p>\",\"PeriodicalId\":94035,\"journal\":{\"name\":\"IEEE transactions on visualization and computer graphics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on visualization and computer graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TVCG.2025.3579700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3579700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

交互式可视化编辑器允许用户在不编写代码的情况下编写可视化,但不提供关于有效的视觉交流的艺术和工艺的指导。在本文中,我们探索了使用现成的大型语言模型(llm)为可视化设计人员提供可操作的和定制的反馈的潜力。我们的实现Visualizationary通过两个关键组件演示了ChatGPT如何用于此目的:可视化设计指南的序言和一套从可视化图像中提取显著指标的感知过滤器。我们介绍了一项纵向用户研究的结果,该研究涉及13名可视化设计师——6名新手,4名中级设计师和3名专家——他们在几天内从零开始创作了一个新的可视化。我们的结果表明,通过LLM提供自然语言指导可以帮助经验丰富的设计师改进他们的可视化。我们所有的补充材料都可以在https://osf.io/v7hu8上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualizationary: Automating Design Feedback for Visualization Designers Using LLMs.

Interactive visualization editors empower users to author visualizations without writing code, but do not provide guidance on the art and craft of effective visual communication. In this paper, we explore the potential of using an off-the-shelf large language models (LLMs) to provide actionable and customized feedback to visualization designers. Our implementation, Visualizationary, demonstrates how ChatGPT can be used for this purpose through two key components: a preamble of visualization design guidelines and a suite of perceptual filters that extract salient metrics from a visualization image. We present findings from a longitudinal user study involving 13 visualization designers-6 novices, 4 intermediates, and 3 experts-who authored a new visualization from scratch over several days. Our results indicate that providing guidance in natural language via an LLM can aid even seasoned designers in refining their visualizations. All our supplemental materials are available at https://osf.io/v7hu8.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信