应用临床记录的自然语言处理对立体定向放射外科患者进行初步诊断分类。

IF 3.3 Q2 ONCOLOGY
JCO Clinical Cancer Informatics Pub Date : 2025-06-01 Epub Date: 2025-06-13 DOI:10.1200/CCI-24-00268
Mario Fugal, David Marshall, Alexander V Alekseyenko, Xia Jing, Graham Warren, Jihad Obeid
{"title":"应用临床记录的自然语言处理对立体定向放射外科患者进行初步诊断分类。","authors":"Mario Fugal, David Marshall, Alexander V Alekseyenko, Xia Jing, Graham Warren, Jihad Obeid","doi":"10.1200/CCI-24-00268","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Accurate identification of the primary tumor diagnosis of patients who have undergone stereotactic radiosurgery (SRS) from electronic health records is a critical but challenging task. Traditional methods of identifying the primary tumor histology relying on International Classification of Diseases (ICD)9 and ICD10 CM codes often fall short in granularity and completeness, particularly for patients with metastatic cancer.</p><p><strong>Methods: </strong>In this study, we propose an approach leveraging natural language processing (NLP) algorithms to enhance the accuracy of extracting primary tumor histology from the patient's electronic records.</p><p><strong>Results: </strong>Through manual annotation of patient data and subsequent algorithm training, we achieved improvements in accuracy and efficiency in primary tumor type classification and finding histology subtypes not available in ICD10 CM.</p><p><strong>Conclusion: </strong>Our findings underscore the value of NLP in refining research processes, identifying patients' cohorts, and improving efficiencies with the goal of potentially improving patient outcomes in SRS treatment.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":"9 ","pages":"e2400268"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12178166/pdf/","citationCount":"0","resultStr":"{\"title\":\"Classifying Stereotactic Radiosurgery Patients by Primary Diagnosis Using Natural Language Processing of Clinical Notes.\",\"authors\":\"Mario Fugal, David Marshall, Alexander V Alekseyenko, Xia Jing, Graham Warren, Jihad Obeid\",\"doi\":\"10.1200/CCI-24-00268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Accurate identification of the primary tumor diagnosis of patients who have undergone stereotactic radiosurgery (SRS) from electronic health records is a critical but challenging task. Traditional methods of identifying the primary tumor histology relying on International Classification of Diseases (ICD)9 and ICD10 CM codes often fall short in granularity and completeness, particularly for patients with metastatic cancer.</p><p><strong>Methods: </strong>In this study, we propose an approach leveraging natural language processing (NLP) algorithms to enhance the accuracy of extracting primary tumor histology from the patient's electronic records.</p><p><strong>Results: </strong>Through manual annotation of patient data and subsequent algorithm training, we achieved improvements in accuracy and efficiency in primary tumor type classification and finding histology subtypes not available in ICD10 CM.</p><p><strong>Conclusion: </strong>Our findings underscore the value of NLP in refining research processes, identifying patients' cohorts, and improving efficiencies with the goal of potentially improving patient outcomes in SRS treatment.</p>\",\"PeriodicalId\":51626,\"journal\":{\"name\":\"JCO Clinical Cancer Informatics\",\"volume\":\"9 \",\"pages\":\"e2400268\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12178166/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCO Clinical Cancer Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1200/CCI-24-00268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI-24-00268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:从电子病历中准确识别接受立体定向放射手术(SRS)患者的原发肿瘤诊断是一项关键但具有挑战性的任务。传统的依靠国际疾病分类(ICD)9和ICD10 CM代码识别原发肿瘤组织学的方法往往缺乏粒度和完整性,特别是对于转移性癌症患者。方法:在本研究中,我们提出了一种利用自然语言处理(NLP)算法来提高从患者电子记录中提取原发肿瘤组织学的准确性的方法。结果:通过对患者数据的手工标注和后续的算法训练,我们提高了原发肿瘤类型分类的准确性和效率,并发现了ICD10 CM中没有的组织学亚型。结论:我们的研究结果强调了NLP在改进研究过程、确定患者队列和提高效率方面的价值,目标是潜在地改善SRS治疗中患者的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classifying Stereotactic Radiosurgery Patients by Primary Diagnosis Using Natural Language Processing of Clinical Notes.

Purpose: Accurate identification of the primary tumor diagnosis of patients who have undergone stereotactic radiosurgery (SRS) from electronic health records is a critical but challenging task. Traditional methods of identifying the primary tumor histology relying on International Classification of Diseases (ICD)9 and ICD10 CM codes often fall short in granularity and completeness, particularly for patients with metastatic cancer.

Methods: In this study, we propose an approach leveraging natural language processing (NLP) algorithms to enhance the accuracy of extracting primary tumor histology from the patient's electronic records.

Results: Through manual annotation of patient data and subsequent algorithm training, we achieved improvements in accuracy and efficiency in primary tumor type classification and finding histology subtypes not available in ICD10 CM.

Conclusion: Our findings underscore the value of NLP in refining research processes, identifying patients' cohorts, and improving efficiencies with the goal of potentially improving patient outcomes in SRS treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
4.80%
发文量
190
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信