疟疾中的恶性疟原虫p型atp酶4:ADMET、突变效应和潜在抑制剂的分子模拟研究。

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Iseoluwa Isaac Ajayi, Toluwase Hezekiah Fatoki, Ayodele Sunday Alonge, Courage Dele Famusiwa, Ibrahim Olabayode Saliu, Blessing Anuoluwapo Ejimadu, Mayowa Oluwalana Obafemi
{"title":"疟疾中的恶性疟原虫p型atp酶4:ADMET、突变效应和潜在抑制剂的分子模拟研究。","authors":"Iseoluwa Isaac Ajayi, Toluwase Hezekiah Fatoki, Ayodele Sunday Alonge, Courage Dele Famusiwa, Ibrahim Olabayode Saliu, Blessing Anuoluwapo Ejimadu, Mayowa Oluwalana Obafemi","doi":"10.1080/07391102.2025.2516757","DOIUrl":null,"url":null,"abstract":"<p><p>Malaria, a life-threatening disease caused by Plasmodium parasites, remains a major global health concern, with 247 million cases and approximately 627,000 deaths reported in 2020 across 84 malaria-endemic countries. The <i>Plasmodium falciparum</i> P-type ATPase 4 (PfATP4) gene is expressed throughout the parasite's asexual erythrocytic cycle and plays a vital role in regulating sodium ion levels in the plasma membrane. This study aimed to computationally evaluate selected clinical candidate compounds targeting PfATP4, focusing on their pharmacokinetics and molecular binding characteristics to support further drug development. Pharmacokinetic analyses revealed that Concanamycin A, Maduramicin, and GNF-Pf4492 exhibit low gastrointestinal absorption, while Brefeldin A, MMV396719, MMV006239, and Cipargamin can cross the blood-brain barrier. Among these, Brefeldin A and MMV006239 showed the lowest toxicity. Molecular docking revealed that (+)-SJ733 had the highest binding affinity (-8.891 kcal/mol), followed by MMV665878 (-7.796 kcal/mol) and Maduramicin (-7.791 kcal/mol). All 11 compounds showed binding affinities below -7.000 kcal/mol. Molecular dynamics simulations indicated stable interactions between PfATP4 and both (+)-SJ733 and MMV665878, involving key residues such as PHE917, GLN921, ARG985, and THR993. MMGBSA analysis showed that the MMV665878-PfATP4 complex was more stable and energetically favorable than the (+)-SJ733-PfATP4 complex under simulated physiological conditions. In conclusion, (+)-SJ733 and MMV665878 demonstrate strong potential as PfATP4 inhibitors, with different interaction profiles. Further <i>in vivo</i> and pharmacometric studies are required to validate their efficacy and determine optimal dosing strategies for malaria treatment.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-16"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting <i>Plasmodium falciparum</i> P-type ATPase 4 in malarial: ADMET, mutation effect, and molecular simulation studies of potential inhibitors.\",\"authors\":\"Iseoluwa Isaac Ajayi, Toluwase Hezekiah Fatoki, Ayodele Sunday Alonge, Courage Dele Famusiwa, Ibrahim Olabayode Saliu, Blessing Anuoluwapo Ejimadu, Mayowa Oluwalana Obafemi\",\"doi\":\"10.1080/07391102.2025.2516757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Malaria, a life-threatening disease caused by Plasmodium parasites, remains a major global health concern, with 247 million cases and approximately 627,000 deaths reported in 2020 across 84 malaria-endemic countries. The <i>Plasmodium falciparum</i> P-type ATPase 4 (PfATP4) gene is expressed throughout the parasite's asexual erythrocytic cycle and plays a vital role in regulating sodium ion levels in the plasma membrane. This study aimed to computationally evaluate selected clinical candidate compounds targeting PfATP4, focusing on their pharmacokinetics and molecular binding characteristics to support further drug development. Pharmacokinetic analyses revealed that Concanamycin A, Maduramicin, and GNF-Pf4492 exhibit low gastrointestinal absorption, while Brefeldin A, MMV396719, MMV006239, and Cipargamin can cross the blood-brain barrier. Among these, Brefeldin A and MMV006239 showed the lowest toxicity. Molecular docking revealed that (+)-SJ733 had the highest binding affinity (-8.891 kcal/mol), followed by MMV665878 (-7.796 kcal/mol) and Maduramicin (-7.791 kcal/mol). All 11 compounds showed binding affinities below -7.000 kcal/mol. Molecular dynamics simulations indicated stable interactions between PfATP4 and both (+)-SJ733 and MMV665878, involving key residues such as PHE917, GLN921, ARG985, and THR993. MMGBSA analysis showed that the MMV665878-PfATP4 complex was more stable and energetically favorable than the (+)-SJ733-PfATP4 complex under simulated physiological conditions. In conclusion, (+)-SJ733 and MMV665878 demonstrate strong potential as PfATP4 inhibitors, with different interaction profiles. Further <i>in vivo</i> and pharmacometric studies are required to validate their efficacy and determine optimal dosing strategies for malaria treatment.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"1-16\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2025.2516757\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2025.2516757","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

疟疾是由疟原虫引起的一种危及生命的疾病,仍然是一个主要的全球卫生问题。2020年,84个疟疾流行国家报告了2.47亿例病例,约62.7万人死亡。恶性疟原虫p型atp酶4 (PfATP4)基因在疟原虫的无性红细胞周期中表达,在调节质膜钠离子水平中起重要作用。本研究旨在对选定的靶向PfATP4的临床候选化合物进行计算评估,重点研究其药代动力学和分子结合特性,以支持进一步的药物开发。药代动力学分析显示,Concanamycin A、Maduramicin和GNF-Pf4492的胃肠道吸收较低,而Brefeldin A、MMV396719、MMV006239和Cipargamin可以穿过血脑屏障。其中Brefeldin A和MMV006239毒性最低。分子对接结果显示,(+)-SJ733的结合亲和力最高(-8.891 kcal/mol),其次是MMV665878 (-7.796 kcal/mol)和Maduramicin (-7.791 kcal/mol)。11种化合物的结合亲和力均低于- 7000 kcal/mol。分子动力学模拟表明,PfATP4与(+)-SJ733和MMV665878之间存在稳定的相互作用,涉及PHE917、GLN921、ARG985和THR993等关键残基。MMGBSA分析表明,在模拟生理条件下,MMV665878-PfATP4复合物比(+)-SJ733-PfATP4复合物更稳定,能量更有利。综上所述,(+)-SJ733和MMV665878表现出作为PfATP4抑制剂的强大潜力,它们具有不同的相互作用谱。需要进一步的体内和药物计量学研究来验证它们的功效并确定疟疾治疗的最佳剂量策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting Plasmodium falciparum P-type ATPase 4 in malarial: ADMET, mutation effect, and molecular simulation studies of potential inhibitors.

Malaria, a life-threatening disease caused by Plasmodium parasites, remains a major global health concern, with 247 million cases and approximately 627,000 deaths reported in 2020 across 84 malaria-endemic countries. The Plasmodium falciparum P-type ATPase 4 (PfATP4) gene is expressed throughout the parasite's asexual erythrocytic cycle and plays a vital role in regulating sodium ion levels in the plasma membrane. This study aimed to computationally evaluate selected clinical candidate compounds targeting PfATP4, focusing on their pharmacokinetics and molecular binding characteristics to support further drug development. Pharmacokinetic analyses revealed that Concanamycin A, Maduramicin, and GNF-Pf4492 exhibit low gastrointestinal absorption, while Brefeldin A, MMV396719, MMV006239, and Cipargamin can cross the blood-brain barrier. Among these, Brefeldin A and MMV006239 showed the lowest toxicity. Molecular docking revealed that (+)-SJ733 had the highest binding affinity (-8.891 kcal/mol), followed by MMV665878 (-7.796 kcal/mol) and Maduramicin (-7.791 kcal/mol). All 11 compounds showed binding affinities below -7.000 kcal/mol. Molecular dynamics simulations indicated stable interactions between PfATP4 and both (+)-SJ733 and MMV665878, involving key residues such as PHE917, GLN921, ARG985, and THR993. MMGBSA analysis showed that the MMV665878-PfATP4 complex was more stable and energetically favorable than the (+)-SJ733-PfATP4 complex under simulated physiological conditions. In conclusion, (+)-SJ733 and MMV665878 demonstrate strong potential as PfATP4 inhibitors, with different interaction profiles. Further in vivo and pharmacometric studies are required to validate their efficacy and determine optimal dosing strategies for malaria treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信