Leiming Du , Weiping Jiao , Olof Bäcke , Magnus Hörnqvist Colliander , René H. Poelma , Jiajie Fan , Willem D. van Driel , Xuejun Fan , Guoqi Zhang
{"title":"纳米铜烧结界面强度及裂纹扩展机制","authors":"Leiming Du , Weiping Jiao , Olof Bäcke , Magnus Hörnqvist Colliander , René H. Poelma , Jiajie Fan , Willem D. van Driel , Xuejun Fan , Guoqi Zhang","doi":"10.1016/j.actamat.2025.121187","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the interface strength and fracture behavior of sintered copper (Cu) nanoparticles (NPs) for all-Cu integration in advanced microelectronics packaging. Micro-cantilever bending tests on three configurations (Cu NP-notched, interface-notched and un-notched micro-cantilevers) were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), transmission Kikuchi diffraction (TKD) and cohesive zone model (CZM). The interface-notched micro-cantilevers demonstrate superior fracture resistance, with a stress intensity factor (<span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>Q</mi></mrow></msub></math></span>) of <span><math><mrow><mn>2</mn><mo>.</mo><mn>88</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>10</mn></mrow></math></span> MPa m<span><math><msup><mrow></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span>, compared to <span><math><mrow><mn>2</mn><mo>.</mo><mn>12</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>11</mn></mrow></math></span> MPa m<span><math><msup><mrow></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> for Cu NP-notched micro-cantilevers. Simulation results, consistent with experimental results, reveal that Cu NP-notched micro-cantilevers exhibit lower fracture resistance due to porosity and stress concentrations, while interface-notched micro-cantilevers show enhanced strength, attributed to robust bonding and reduced void distribution. Un-notched micro-cantilevers display superior load-bearing capacity, with cracks bypassing the interface and propagating through porous regions. Moreover, in un-notched micro-cantilevers, a synergistic deformation mechanism is observed, where crack propagation through the sintered Cu NPs coexists with plastic slip deformation in the Cu substrate. These findings highlight the strong interfacial bonding and effective stress transfer at the Cu substrate-sintered Cu NP interface, validating the feasibility of direct sintering using Cu NPs without additional coatings.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"296 ","pages":"Article 121187"},"PeriodicalIF":8.3000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interface strength and crack propagation mechanisms in sintered copper nanoparticles\",\"authors\":\"Leiming Du , Weiping Jiao , Olof Bäcke , Magnus Hörnqvist Colliander , René H. Poelma , Jiajie Fan , Willem D. van Driel , Xuejun Fan , Guoqi Zhang\",\"doi\":\"10.1016/j.actamat.2025.121187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the interface strength and fracture behavior of sintered copper (Cu) nanoparticles (NPs) for all-Cu integration in advanced microelectronics packaging. Micro-cantilever bending tests on three configurations (Cu NP-notched, interface-notched and un-notched micro-cantilevers) were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), transmission Kikuchi diffraction (TKD) and cohesive zone model (CZM). The interface-notched micro-cantilevers demonstrate superior fracture resistance, with a stress intensity factor (<span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>Q</mi></mrow></msub></math></span>) of <span><math><mrow><mn>2</mn><mo>.</mo><mn>88</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>10</mn></mrow></math></span> MPa m<span><math><msup><mrow></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span>, compared to <span><math><mrow><mn>2</mn><mo>.</mo><mn>12</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>11</mn></mrow></math></span> MPa m<span><math><msup><mrow></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> for Cu NP-notched micro-cantilevers. Simulation results, consistent with experimental results, reveal that Cu NP-notched micro-cantilevers exhibit lower fracture resistance due to porosity and stress concentrations, while interface-notched micro-cantilevers show enhanced strength, attributed to robust bonding and reduced void distribution. Un-notched micro-cantilevers display superior load-bearing capacity, with cracks bypassing the interface and propagating through porous regions. Moreover, in un-notched micro-cantilevers, a synergistic deformation mechanism is observed, where crack propagation through the sintered Cu NPs coexists with plastic slip deformation in the Cu substrate. These findings highlight the strong interfacial bonding and effective stress transfer at the Cu substrate-sintered Cu NP interface, validating the feasibility of direct sintering using Cu NPs without additional coatings.</div></div>\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"296 \",\"pages\":\"Article 121187\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359645425004744\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425004744","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Interface strength and crack propagation mechanisms in sintered copper nanoparticles
This study investigates the interface strength and fracture behavior of sintered copper (Cu) nanoparticles (NPs) for all-Cu integration in advanced microelectronics packaging. Micro-cantilever bending tests on three configurations (Cu NP-notched, interface-notched and un-notched micro-cantilevers) were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), transmission Kikuchi diffraction (TKD) and cohesive zone model (CZM). The interface-notched micro-cantilevers demonstrate superior fracture resistance, with a stress intensity factor () of MPa m, compared to MPa m for Cu NP-notched micro-cantilevers. Simulation results, consistent with experimental results, reveal that Cu NP-notched micro-cantilevers exhibit lower fracture resistance due to porosity and stress concentrations, while interface-notched micro-cantilevers show enhanced strength, attributed to robust bonding and reduced void distribution. Un-notched micro-cantilevers display superior load-bearing capacity, with cracks bypassing the interface and propagating through porous regions. Moreover, in un-notched micro-cantilevers, a synergistic deformation mechanism is observed, where crack propagation through the sintered Cu NPs coexists with plastic slip deformation in the Cu substrate. These findings highlight the strong interfacial bonding and effective stress transfer at the Cu substrate-sintered Cu NP interface, validating the feasibility of direct sintering using Cu NPs without additional coatings.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.