纳米铜烧结界面强度及裂纹扩展机制

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Leiming Du , Weiping Jiao , Olof Bäcke , Magnus Hörnqvist Colliander , René H. Poelma , Jiajie Fan , Willem D. van Driel , Xuejun Fan , Guoqi Zhang
{"title":"纳米铜烧结界面强度及裂纹扩展机制","authors":"Leiming Du ,&nbsp;Weiping Jiao ,&nbsp;Olof Bäcke ,&nbsp;Magnus Hörnqvist Colliander ,&nbsp;René H. Poelma ,&nbsp;Jiajie Fan ,&nbsp;Willem D. van Driel ,&nbsp;Xuejun Fan ,&nbsp;Guoqi Zhang","doi":"10.1016/j.actamat.2025.121187","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the interface strength and fracture behavior of sintered copper (Cu) nanoparticles (NPs) for all-Cu integration in advanced microelectronics packaging. Micro-cantilever bending tests on three configurations (Cu NP-notched, interface-notched and un-notched micro-cantilevers) were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), transmission Kikuchi diffraction (TKD) and cohesive zone model (CZM). The interface-notched micro-cantilevers demonstrate superior fracture resistance, with a stress intensity factor (<span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>Q</mi></mrow></msub></math></span>) of <span><math><mrow><mn>2</mn><mo>.</mo><mn>88</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>10</mn></mrow></math></span> MPa m<span><math><msup><mrow></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span>, compared to <span><math><mrow><mn>2</mn><mo>.</mo><mn>12</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>11</mn></mrow></math></span> MPa m<span><math><msup><mrow></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> for Cu NP-notched micro-cantilevers. Simulation results, consistent with experimental results, reveal that Cu NP-notched micro-cantilevers exhibit lower fracture resistance due to porosity and stress concentrations, while interface-notched micro-cantilevers show enhanced strength, attributed to robust bonding and reduced void distribution. Un-notched micro-cantilevers display superior load-bearing capacity, with cracks bypassing the interface and propagating through porous regions. Moreover, in un-notched micro-cantilevers, a synergistic deformation mechanism is observed, where crack propagation through the sintered Cu NPs coexists with plastic slip deformation in the Cu substrate. These findings highlight the strong interfacial bonding and effective stress transfer at the Cu substrate-sintered Cu NP interface, validating the feasibility of direct sintering using Cu NPs without additional coatings.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"296 ","pages":"Article 121187"},"PeriodicalIF":8.3000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interface strength and crack propagation mechanisms in sintered copper nanoparticles\",\"authors\":\"Leiming Du ,&nbsp;Weiping Jiao ,&nbsp;Olof Bäcke ,&nbsp;Magnus Hörnqvist Colliander ,&nbsp;René H. Poelma ,&nbsp;Jiajie Fan ,&nbsp;Willem D. van Driel ,&nbsp;Xuejun Fan ,&nbsp;Guoqi Zhang\",\"doi\":\"10.1016/j.actamat.2025.121187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the interface strength and fracture behavior of sintered copper (Cu) nanoparticles (NPs) for all-Cu integration in advanced microelectronics packaging. Micro-cantilever bending tests on three configurations (Cu NP-notched, interface-notched and un-notched micro-cantilevers) were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), transmission Kikuchi diffraction (TKD) and cohesive zone model (CZM). The interface-notched micro-cantilevers demonstrate superior fracture resistance, with a stress intensity factor (<span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>Q</mi></mrow></msub></math></span>) of <span><math><mrow><mn>2</mn><mo>.</mo><mn>88</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>10</mn></mrow></math></span> MPa m<span><math><msup><mrow></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span>, compared to <span><math><mrow><mn>2</mn><mo>.</mo><mn>12</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>11</mn></mrow></math></span> MPa m<span><math><msup><mrow></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> for Cu NP-notched micro-cantilevers. Simulation results, consistent with experimental results, reveal that Cu NP-notched micro-cantilevers exhibit lower fracture resistance due to porosity and stress concentrations, while interface-notched micro-cantilevers show enhanced strength, attributed to robust bonding and reduced void distribution. Un-notched micro-cantilevers display superior load-bearing capacity, with cracks bypassing the interface and propagating through porous regions. Moreover, in un-notched micro-cantilevers, a synergistic deformation mechanism is observed, where crack propagation through the sintered Cu NPs coexists with plastic slip deformation in the Cu substrate. These findings highlight the strong interfacial bonding and effective stress transfer at the Cu substrate-sintered Cu NP interface, validating the feasibility of direct sintering using Cu NPs without additional coatings.</div></div>\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"296 \",\"pages\":\"Article 121187\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359645425004744\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425004744","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了用于先进微电子封装全铜集成的烧结铜纳米颗粒(NPs)的界面强度和断裂行为。采用扫描电镜(SEM)、透射电镜(TEM)、透射Kikuchi衍射(TKD)和内聚带模型(CZM)对铜np缺口、界面缺口和非缺口微悬臂梁三种构型的微悬臂梁弯曲进行了分析。界面缺口微悬臂梁的应力强度因子(KQ)为2.88±0.10 MPa m1/2,而Cu np缺口微悬臂梁的应力强度因子(KQ)为2.12±0.11 MPa m1/2。模拟结果与实验结果一致,表明由于孔隙度和应力集中,铜np缺口微悬臂梁的抗断裂能力较低,而界面缺口微悬臂梁的强度增强,这主要归功于牢固的结合和减少的空隙分布。无缺口微悬臂梁显示出优越的承载能力,裂缝绕过界面并通过多孔区域传播。此外,在非缺口微悬臂梁中,观察到一种协同变形机制,其中裂纹通过烧结Cu NPs扩展与Cu衬底的塑性滑移变形共存。这些发现强调了Cu衬底-烧结Cu NP界面上的强界面键合和有效的应力传递,验证了使用Cu NP直接烧结而无需额外涂层的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interface strength and crack propagation mechanisms in sintered copper nanoparticles

Interface strength and crack propagation mechanisms in sintered copper nanoparticles
This study investigates the interface strength and fracture behavior of sintered copper (Cu) nanoparticles (NPs) for all-Cu integration in advanced microelectronics packaging. Micro-cantilever bending tests on three configurations (Cu NP-notched, interface-notched and un-notched micro-cantilevers) were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), transmission Kikuchi diffraction (TKD) and cohesive zone model (CZM). The interface-notched micro-cantilevers demonstrate superior fracture resistance, with a stress intensity factor (KQ) of 2.88±0.10 MPa m1/2, compared to 2.12±0.11 MPa m1/2 for Cu NP-notched micro-cantilevers. Simulation results, consistent with experimental results, reveal that Cu NP-notched micro-cantilevers exhibit lower fracture resistance due to porosity and stress concentrations, while interface-notched micro-cantilevers show enhanced strength, attributed to robust bonding and reduced void distribution. Un-notched micro-cantilevers display superior load-bearing capacity, with cracks bypassing the interface and propagating through porous regions. Moreover, in un-notched micro-cantilevers, a synergistic deformation mechanism is observed, where crack propagation through the sintered Cu NPs coexists with plastic slip deformation in the Cu substrate. These findings highlight the strong interfacial bonding and effective stress transfer at the Cu substrate-sintered Cu NP interface, validating the feasibility of direct sintering using Cu NPs without additional coatings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信