{"title":"一个云调节的地表变暖模式来重建多云条件下的白天地表温度","authors":"Fei Xu , Xiaolin Zhu","doi":"10.1016/j.rse.2025.114873","DOIUrl":null,"url":null,"abstract":"<div><div>Daytime land surface temperature (D-LST) plays a pivotal role in regulating net ecosystem exchanges and is characterized by rapid fluctuations. Thermal infrared satellite remote sensing (TIRS) is widely used to acquire D-LST data owing to its global coverage and high-frequency observations. However, the presence of cloud cover impedes the TIRS technique by obstructing ground thermal emissions. A prevalent solution to this challenge involves correcting clear-sky surface temperatures using the cloud effect which is derived from surface energy balance (SEB) models representing distinct weather conditions. Yet, conventional methods might encounter substantial uncertainties primarily due to the oversimplified SEB modeling, which exacerbates the temperature estimation errors caused by the biases in their employed data products. This study introduces a novel SEB model termed ‘C-SWARM’, designed to reconstruct D-LST under cloudy conditions. The C-SWARM model characterizes D-LST as the result of a cloud-moderated surface warming process, with coefficients indicating the complementary mechanism for solar heating and atmospheric insulation driving surface warming throughout the day. The new model was implemented to fill missing data caused by cloud cover in the LST product of NOAA's Geostationary Operational Environmental Satellite (GOES-R), demonstrating a mean absolute error of 2.57 K and accuracy improvements of 0.38 to 1.89 K over benchmark methods at 49 flux tower sites across the contiguous United States. The explicit physical mechanisms make the C-SWARM model a generalized solution for all-weather remote sensing across spatial and temporal scales.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"328 ","pages":"Article 114873"},"PeriodicalIF":11.4000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A cloud-regulated land surface warming model to reconstruct daytime surface temperatures under cloudy conditions\",\"authors\":\"Fei Xu , Xiaolin Zhu\",\"doi\":\"10.1016/j.rse.2025.114873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Daytime land surface temperature (D-LST) plays a pivotal role in regulating net ecosystem exchanges and is characterized by rapid fluctuations. Thermal infrared satellite remote sensing (TIRS) is widely used to acquire D-LST data owing to its global coverage and high-frequency observations. However, the presence of cloud cover impedes the TIRS technique by obstructing ground thermal emissions. A prevalent solution to this challenge involves correcting clear-sky surface temperatures using the cloud effect which is derived from surface energy balance (SEB) models representing distinct weather conditions. Yet, conventional methods might encounter substantial uncertainties primarily due to the oversimplified SEB modeling, which exacerbates the temperature estimation errors caused by the biases in their employed data products. This study introduces a novel SEB model termed ‘C-SWARM’, designed to reconstruct D-LST under cloudy conditions. The C-SWARM model characterizes D-LST as the result of a cloud-moderated surface warming process, with coefficients indicating the complementary mechanism for solar heating and atmospheric insulation driving surface warming throughout the day. The new model was implemented to fill missing data caused by cloud cover in the LST product of NOAA's Geostationary Operational Environmental Satellite (GOES-R), demonstrating a mean absolute error of 2.57 K and accuracy improvements of 0.38 to 1.89 K over benchmark methods at 49 flux tower sites across the contiguous United States. The explicit physical mechanisms make the C-SWARM model a generalized solution for all-weather remote sensing across spatial and temporal scales.</div></div>\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"328 \",\"pages\":\"Article 114873\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034425725002779\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425725002779","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A cloud-regulated land surface warming model to reconstruct daytime surface temperatures under cloudy conditions
Daytime land surface temperature (D-LST) plays a pivotal role in regulating net ecosystem exchanges and is characterized by rapid fluctuations. Thermal infrared satellite remote sensing (TIRS) is widely used to acquire D-LST data owing to its global coverage and high-frequency observations. However, the presence of cloud cover impedes the TIRS technique by obstructing ground thermal emissions. A prevalent solution to this challenge involves correcting clear-sky surface temperatures using the cloud effect which is derived from surface energy balance (SEB) models representing distinct weather conditions. Yet, conventional methods might encounter substantial uncertainties primarily due to the oversimplified SEB modeling, which exacerbates the temperature estimation errors caused by the biases in their employed data products. This study introduces a novel SEB model termed ‘C-SWARM’, designed to reconstruct D-LST under cloudy conditions. The C-SWARM model characterizes D-LST as the result of a cloud-moderated surface warming process, with coefficients indicating the complementary mechanism for solar heating and atmospheric insulation driving surface warming throughout the day. The new model was implemented to fill missing data caused by cloud cover in the LST product of NOAA's Geostationary Operational Environmental Satellite (GOES-R), demonstrating a mean absolute error of 2.57 K and accuracy improvements of 0.38 to 1.89 K over benchmark methods at 49 flux tower sites across the contiguous United States. The explicit physical mechanisms make the C-SWARM model a generalized solution for all-weather remote sensing across spatial and temporal scales.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.