通过SCERPA - DFT计算推测分子系综静电特性:分子场耦合纳米计算为例研究

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Yuri Ardesi, Fabrizio Mo, Marco Vacca, Gianluca Piccinini, Mariagrazia Graziano
{"title":"通过SCERPA - DFT计算推测分子系综静电特性:分子场耦合纳米计算为例研究","authors":"Yuri Ardesi, Fabrizio Mo, Marco Vacca, Gianluca Piccinini, Mariagrazia Graziano","doi":"10.1002/adts.202500812","DOIUrl":null,"url":null,"abstract":"In the field of electronics, molecular technologies provide promising opportunities for innovators and scientists to advance technological progress. At the molecular scale, the simulation of ensembles becomes fundamental to advancing the fabrication, design, and prototyping of new technologies. This work proposes a framework leveraging the SCERPA tool and DFT calculation to efficiently evaluate the electronic properties of molecular ensembles. The Molecular Field‐Coupled Nanocomputing (MolFCN) is considered as a case study to validate ab initio‐comparable precision resulting from the SCERPA calculation on charge‐constrained multi‐molecule systems. In addition, it is demonstrated that the SCERPA results can be used as a nonrelativistic initial guess of DFT calculation, eventually reducing the ab initio computation time by 86 %. Finally, a periodic molecular FCN system is proposed, named <jats:italic>SelfPolarizer</jats:italic>. The proposed framework is employed to demonstrate that the ensemble naturally encodes QCA‐like digital information, providing the first simulated proof of concept for MolFCN technology obtained with DFT precision.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"32 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Guesstimation of Molecular Ensemble Electrostatics Properties Through SCERPA‐DFT Calculation: Molecular Field‐Coupled Nanocomputing as a Case Study\",\"authors\":\"Yuri Ardesi, Fabrizio Mo, Marco Vacca, Gianluca Piccinini, Mariagrazia Graziano\",\"doi\":\"10.1002/adts.202500812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of electronics, molecular technologies provide promising opportunities for innovators and scientists to advance technological progress. At the molecular scale, the simulation of ensembles becomes fundamental to advancing the fabrication, design, and prototyping of new technologies. This work proposes a framework leveraging the SCERPA tool and DFT calculation to efficiently evaluate the electronic properties of molecular ensembles. The Molecular Field‐Coupled Nanocomputing (MolFCN) is considered as a case study to validate ab initio‐comparable precision resulting from the SCERPA calculation on charge‐constrained multi‐molecule systems. In addition, it is demonstrated that the SCERPA results can be used as a nonrelativistic initial guess of DFT calculation, eventually reducing the ab initio computation time by 86 %. Finally, a periodic molecular FCN system is proposed, named <jats:italic>SelfPolarizer</jats:italic>. The proposed framework is employed to demonstrate that the ensemble naturally encodes QCA‐like digital information, providing the first simulated proof of concept for MolFCN technology obtained with DFT precision.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202500812\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202500812","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在电子领域,分子技术为创新者和科学家提供了推动技术进步的良好机会。在分子尺度上,集成的模拟对于推进新技术的制造、设计和原型制作至关重要。这项工作提出了一个利用SCERPA工具和DFT计算的框架,以有效地评估分子系综的电子性质。分子场耦合纳米计算(MolFCN)被认为是一个案例研究,以验证电荷约束多分子体系的SCERPA计算所产生的从头开始相当的精度。此外,还证明了SCERPA结果可以作为DFT计算的非相对论性初始猜测,最终将从头计算时间缩短了86%。最后,提出了一种周期分子FCN系统,命名为SelfPolarizer。所提出的框架被用来证明集成自然地编码类似QCA的数字信息,为具有DFT精度的MolFCN技术提供了第一个模拟概念证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Guesstimation of Molecular Ensemble Electrostatics Properties Through SCERPA‐DFT Calculation: Molecular Field‐Coupled Nanocomputing as a Case Study
In the field of electronics, molecular technologies provide promising opportunities for innovators and scientists to advance technological progress. At the molecular scale, the simulation of ensembles becomes fundamental to advancing the fabrication, design, and prototyping of new technologies. This work proposes a framework leveraging the SCERPA tool and DFT calculation to efficiently evaluate the electronic properties of molecular ensembles. The Molecular Field‐Coupled Nanocomputing (MolFCN) is considered as a case study to validate ab initio‐comparable precision resulting from the SCERPA calculation on charge‐constrained multi‐molecule systems. In addition, it is demonstrated that the SCERPA results can be used as a nonrelativistic initial guess of DFT calculation, eventually reducing the ab initio computation time by 86 %. Finally, a periodic molecular FCN system is proposed, named SelfPolarizer. The proposed framework is employed to demonstrate that the ensemble naturally encodes QCA‐like digital information, providing the first simulated proof of concept for MolFCN technology obtained with DFT precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信