等电子质量调制对层状光子-碳体系中声子衰变和输运的影响

IF 9.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Prince Sharma , Prashant Singh , Ganesh Balasubramanian
{"title":"等电子质量调制对层状光子-碳体系中声子衰变和输运的影响","authors":"Prince Sharma ,&nbsp;Prashant Singh ,&nbsp;Ganesh Balasubramanian","doi":"10.1016/j.actamat.2025.121263","DOIUrl":null,"url":null,"abstract":"<div><div>This study systematically investigates the structural, electronic, and thermal transport properties of layered pnictogen–carbon (Pn<sub>2</sub>C<sub>2</sub>; Pn = <em>P</em>, As, Sb, Bi) monolayers, revealing a profound influence of isoelectronic mass modulation on phonon dynamics and thermal conductivity. Through first-principles calculations and lattice dynamics analysis, we demonstrate that increasing the atomic mass of pnictogens leads to elongated Pn-C bonds, weakened interatomic interactions, and enhanced phonon-phonon scattering, resulting in a dramatic reduction in lattice thermal conductivity (κ). Specifically, κ decreases exponentially from 65.6 W/m-K in P<sub>2</sub>C<sub>2</sub> to an ultralow 0.37 W/m-K in Bi<sub>2</sub>C<sub>2</sub>, driven by suppressed acoustic-optical phonon gaps <span><math><msubsup><mstyle><mi>Δ</mi></mstyle><mrow><mi>A</mi><mo>−</mo><mi>O</mi></mrow><mstyle><mi>Γ</mi></mstyle></msubsup></math></span>, increased anharmonicity, and reduced phonon lifetimes and group velocities. The transition from semiconducting to metallic behavior in heavier pnictogen-based systems further enhances phonon-electron scattering, contributing to thermal conductivity suppression. Structural analysis highlights the strengthening of out-of-plane C<img>C bonds and the contraction of C<img>Pn<img>C bond angles, which disrupt in-plane phonon transport. These findings establish a design framework for engineering ultralow-κ materials through chemical substitution and structural tuning, offering significant potential for thermoelectric and thermal management applications. This work provides fundamental insights into phonon decay mechanisms and thermal transport in 2D materials, paving the way for advanced phononic and energy-efficient devices.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"296 ","pages":"Article 121263"},"PeriodicalIF":9.3000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of isoelectronic mass modulation on phonon decay and transport in layered pnictogen-carbon systems\",\"authors\":\"Prince Sharma ,&nbsp;Prashant Singh ,&nbsp;Ganesh Balasubramanian\",\"doi\":\"10.1016/j.actamat.2025.121263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study systematically investigates the structural, electronic, and thermal transport properties of layered pnictogen–carbon (Pn<sub>2</sub>C<sub>2</sub>; Pn = <em>P</em>, As, Sb, Bi) monolayers, revealing a profound influence of isoelectronic mass modulation on phonon dynamics and thermal conductivity. Through first-principles calculations and lattice dynamics analysis, we demonstrate that increasing the atomic mass of pnictogens leads to elongated Pn-C bonds, weakened interatomic interactions, and enhanced phonon-phonon scattering, resulting in a dramatic reduction in lattice thermal conductivity (κ). Specifically, κ decreases exponentially from 65.6 W/m-K in P<sub>2</sub>C<sub>2</sub> to an ultralow 0.37 W/m-K in Bi<sub>2</sub>C<sub>2</sub>, driven by suppressed acoustic-optical phonon gaps <span><math><msubsup><mstyle><mi>Δ</mi></mstyle><mrow><mi>A</mi><mo>−</mo><mi>O</mi></mrow><mstyle><mi>Γ</mi></mstyle></msubsup></math></span>, increased anharmonicity, and reduced phonon lifetimes and group velocities. The transition from semiconducting to metallic behavior in heavier pnictogen-based systems further enhances phonon-electron scattering, contributing to thermal conductivity suppression. Structural analysis highlights the strengthening of out-of-plane C<img>C bonds and the contraction of C<img>Pn<img>C bond angles, which disrupt in-plane phonon transport. These findings establish a design framework for engineering ultralow-κ materials through chemical substitution and structural tuning, offering significant potential for thermoelectric and thermal management applications. This work provides fundamental insights into phonon decay mechanisms and thermal transport in 2D materials, paving the way for advanced phononic and energy-efficient devices.</div></div>\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"296 \",\"pages\":\"Article 121263\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359645425005506\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425005506","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究系统地研究了层状Pn2C2 -碳的结构、电子和热输运性质;Pn = P, As, Sb, Bi)单层,揭示了等电子质量调制对声子动力学和导热性的深刻影响。通过第一性原理计算和晶格动力学分析,我们证明了增加烟原的原子质量会导致Pn-C键延长,原子间相互作用减弱,声子-声子散射增强,导致晶格导热系数(κ)急剧降低。具体来说,κ从P2C2中的65.6 W/m-K指数下降到Bi2C2中的超低0.37 W/m-K,这是由于声光声子间隙ΔA−OΓΔA−OΓ被抑制,非谐波性增加,声子寿命和群速度减少。在较重的光原基系统中,从半导体到金属行为的转变进一步增强了声子电子散射,有助于抑制热导率。结构分析强调了面外C-C键的增强和C-Pn-C键角的收缩,这破坏了面内声子的输运。这些发现通过化学替代和结构调整为工程超低κ材料建立了设计框架,为热电和热管理应用提供了巨大的潜力。这项工作为二维材料中的声子衰变机制和热输运提供了基本的见解,为先进的声子和节能设备铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Influence of isoelectronic mass modulation on phonon decay and transport in layered pnictogen-carbon systems

Influence of isoelectronic mass modulation on phonon decay and transport in layered pnictogen-carbon systems

Influence of isoelectronic mass modulation on phonon decay and transport in layered pnictogen-carbon systems
This study systematically investigates the structural, electronic, and thermal transport properties of layered pnictogen–carbon (Pn2C2; Pn = P, As, Sb, Bi) monolayers, revealing a profound influence of isoelectronic mass modulation on phonon dynamics and thermal conductivity. Through first-principles calculations and lattice dynamics analysis, we demonstrate that increasing the atomic mass of pnictogens leads to elongated Pn-C bonds, weakened interatomic interactions, and enhanced phonon-phonon scattering, resulting in a dramatic reduction in lattice thermal conductivity (κ). Specifically, κ decreases exponentially from 65.6 W/m-K in P2C2 to an ultralow 0.37 W/m-K in Bi2C2, driven by suppressed acoustic-optical phonon gaps ΔAOΓ, increased anharmonicity, and reduced phonon lifetimes and group velocities. The transition from semiconducting to metallic behavior in heavier pnictogen-based systems further enhances phonon-electron scattering, contributing to thermal conductivity suppression. Structural analysis highlights the strengthening of out-of-plane CC bonds and the contraction of CPnC bond angles, which disrupt in-plane phonon transport. These findings establish a design framework for engineering ultralow-κ materials through chemical substitution and structural tuning, offering significant potential for thermoelectric and thermal management applications. This work provides fundamental insights into phonon decay mechanisms and thermal transport in 2D materials, paving the way for advanced phononic and energy-efficient devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信