Gianmarco Rasi, Elena Emili, Jessica M Conway, Nicola Cotugno, Paolo Palma
{"title":"HIV潜伏期的数学建模和机制用于个性化抗潜伏期治疗。","authors":"Gianmarco Rasi, Elena Emili, Jessica M Conway, Nicola Cotugno, Paolo Palma","doi":"10.1038/s41540-025-00538-6","DOIUrl":null,"url":null,"abstract":"<p><p>Combination antiretroviral therapy controls human immunodeficiency virus-1 (HIV) but cannot eradicate latent proviruses in immune cells, which reactivate upon treatment interruption. Anti-latency therapies like \"shock-and-kill\" are being developed but are yet to succeed due to the complexity of latency mechanisms. This review discusses recent advances in understanding HIV latency via mathematical modeling, covering key regulatory factors and models to predict latency reversal, highlighting gaps to guide future therapeutic approaches.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"64"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162841/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mathematical modeling and mechanisms of HIV latency for personalized anti latency therapies.\",\"authors\":\"Gianmarco Rasi, Elena Emili, Jessica M Conway, Nicola Cotugno, Paolo Palma\",\"doi\":\"10.1038/s41540-025-00538-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Combination antiretroviral therapy controls human immunodeficiency virus-1 (HIV) but cannot eradicate latent proviruses in immune cells, which reactivate upon treatment interruption. Anti-latency therapies like \\\"shock-and-kill\\\" are being developed but are yet to succeed due to the complexity of latency mechanisms. This review discusses recent advances in understanding HIV latency via mathematical modeling, covering key regulatory factors and models to predict latency reversal, highlighting gaps to guide future therapeutic approaches.</p>\",\"PeriodicalId\":19345,\"journal\":{\"name\":\"NPJ Systems Biology and Applications\",\"volume\":\"11 1\",\"pages\":\"64\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162841/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Systems Biology and Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41540-025-00538-6\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-025-00538-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Mathematical modeling and mechanisms of HIV latency for personalized anti latency therapies.
Combination antiretroviral therapy controls human immunodeficiency virus-1 (HIV) but cannot eradicate latent proviruses in immune cells, which reactivate upon treatment interruption. Anti-latency therapies like "shock-and-kill" are being developed but are yet to succeed due to the complexity of latency mechanisms. This review discusses recent advances in understanding HIV latency via mathematical modeling, covering key regulatory factors and models to predict latency reversal, highlighting gaps to guide future therapeutic approaches.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.