{"title":"线粒体生物发生中的多酚和运动:关注与年龄相关的中枢神经系统疾病。","authors":"Junbiao Tu","doi":"10.1007/s12035-025-05121-y","DOIUrl":null,"url":null,"abstract":"<p><p>Age-related central nervous system (CNS) disorders, including neurodegenerative diseases, represent a growing global health burden. Mitochondrial dysfunction is a recognized hallmark in the pathogenesis of these conditions, emphasizing the critical importance of maintaining neuronal energy homeostasis and cellular integrity. Mitochondrial biogenesis, the dynamic process of generating new, functional mitochondria, is paramount for neuronal health and resilience against age-related decline. This review investigates the therapeutic potential of physical activity and polyphenols in modulating mitochondrial biogenesis and offering neuroprotection within the context of age-related CNS disorders. We explore how regular exercise profoundly impacts the brain by enhancing synaptic plasticity, promoting neurogenesis via neurotrophic factors like BDNF, and stimulating mitochondrial biogenesis through pathways such as PGC-1alpha activation. These adaptations collectively improve cognitive function and bolster neuronal resistance to damage. Concurrently, polyphenols, known for their antioxidant and anti-inflammatory properties, demonstrate significant neuroprotective effects. They are capable of crossing the blood-brain barrier and influencing key neuronal signaling pathways, directly stimulating mitochondrial biogenesis, and mitigating oxidative stress, thereby supporting neuronal survival. By synthesizing current evidence, this review highlights the complementary and potentially synergistic roles of exercise and polyphenols in preserving mitochondrial health and function in the CNS. The combined impact of these interventions offers a promising non-pharmacological strategy to combat age-related neurodegeneration. Future research should focus on optimizing exercise protocols and polyphenol interventions in human trials to maximize their neurotherapeutic benefits for CNS disorders.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyphenols and Exercise in Mitochondrial Biogenesis: Focus on Age-Related CNS Disorders.\",\"authors\":\"Junbiao Tu\",\"doi\":\"10.1007/s12035-025-05121-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Age-related central nervous system (CNS) disorders, including neurodegenerative diseases, represent a growing global health burden. Mitochondrial dysfunction is a recognized hallmark in the pathogenesis of these conditions, emphasizing the critical importance of maintaining neuronal energy homeostasis and cellular integrity. Mitochondrial biogenesis, the dynamic process of generating new, functional mitochondria, is paramount for neuronal health and resilience against age-related decline. This review investigates the therapeutic potential of physical activity and polyphenols in modulating mitochondrial biogenesis and offering neuroprotection within the context of age-related CNS disorders. We explore how regular exercise profoundly impacts the brain by enhancing synaptic plasticity, promoting neurogenesis via neurotrophic factors like BDNF, and stimulating mitochondrial biogenesis through pathways such as PGC-1alpha activation. These adaptations collectively improve cognitive function and bolster neuronal resistance to damage. Concurrently, polyphenols, known for their antioxidant and anti-inflammatory properties, demonstrate significant neuroprotective effects. They are capable of crossing the blood-brain barrier and influencing key neuronal signaling pathways, directly stimulating mitochondrial biogenesis, and mitigating oxidative stress, thereby supporting neuronal survival. By synthesizing current evidence, this review highlights the complementary and potentially synergistic roles of exercise and polyphenols in preserving mitochondrial health and function in the CNS. The combined impact of these interventions offers a promising non-pharmacological strategy to combat age-related neurodegeneration. Future research should focus on optimizing exercise protocols and polyphenol interventions in human trials to maximize their neurotherapeutic benefits for CNS disorders.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-025-05121-y\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-05121-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Polyphenols and Exercise in Mitochondrial Biogenesis: Focus on Age-Related CNS Disorders.
Age-related central nervous system (CNS) disorders, including neurodegenerative diseases, represent a growing global health burden. Mitochondrial dysfunction is a recognized hallmark in the pathogenesis of these conditions, emphasizing the critical importance of maintaining neuronal energy homeostasis and cellular integrity. Mitochondrial biogenesis, the dynamic process of generating new, functional mitochondria, is paramount for neuronal health and resilience against age-related decline. This review investigates the therapeutic potential of physical activity and polyphenols in modulating mitochondrial biogenesis and offering neuroprotection within the context of age-related CNS disorders. We explore how regular exercise profoundly impacts the brain by enhancing synaptic plasticity, promoting neurogenesis via neurotrophic factors like BDNF, and stimulating mitochondrial biogenesis through pathways such as PGC-1alpha activation. These adaptations collectively improve cognitive function and bolster neuronal resistance to damage. Concurrently, polyphenols, known for their antioxidant and anti-inflammatory properties, demonstrate significant neuroprotective effects. They are capable of crossing the blood-brain barrier and influencing key neuronal signaling pathways, directly stimulating mitochondrial biogenesis, and mitigating oxidative stress, thereby supporting neuronal survival. By synthesizing current evidence, this review highlights the complementary and potentially synergistic roles of exercise and polyphenols in preserving mitochondrial health and function in the CNS. The combined impact of these interventions offers a promising non-pharmacological strategy to combat age-related neurodegeneration. Future research should focus on optimizing exercise protocols and polyphenol interventions in human trials to maximize their neurotherapeutic benefits for CNS disorders.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.