用TrAGICo从NMR数据中提取趋势:Python工具箱。

IF 1.9 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Letizia Fiorucci, Francesco Bruno, Leonardo Querci, Adam Kubrak, Jlenia Bindi, Nebojša Rodić, Giulia Licciardi, Enrico Luchinat, Giacomo Parigi, Mario Piccioli, Enrico Ravera
{"title":"用TrAGICo从NMR数据中提取趋势:Python工具箱。","authors":"Letizia Fiorucci, Francesco Bruno, Leonardo Querci, Adam Kubrak, Jlenia Bindi, Nebojša Rodić, Giulia Licciardi, Enrico Luchinat, Giacomo Parigi, Mario Piccioli, Enrico Ravera","doi":"10.1002/mrc.5537","DOIUrl":null,"url":null,"abstract":"<p><p>In this tutorial, we present TrAGICo (Trends Analysis Guided Interfaces Collection), a Python collection of functions for the extraction and analysis of experimental parameters from 1D and pseudo-2D NMR spectra acquired on Bruker instruments. We demonstrate the application of TrAGICo through practical examples, highlighting its utility for various NMR applications, such as extraction of the chemical shift temperature dependence, relaxation studies, and reaction monitoring.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extracting Trends From NMR Data With TrAGICo: A Python Toolbox.\",\"authors\":\"Letizia Fiorucci, Francesco Bruno, Leonardo Querci, Adam Kubrak, Jlenia Bindi, Nebojša Rodić, Giulia Licciardi, Enrico Luchinat, Giacomo Parigi, Mario Piccioli, Enrico Ravera\",\"doi\":\"10.1002/mrc.5537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this tutorial, we present TrAGICo (Trends Analysis Guided Interfaces Collection), a Python collection of functions for the extraction and analysis of experimental parameters from 1D and pseudo-2D NMR spectra acquired on Bruker instruments. We demonstrate the application of TrAGICo through practical examples, highlighting its utility for various NMR applications, such as extraction of the chemical shift temperature dependence, relaxation studies, and reaction monitoring.</p>\",\"PeriodicalId\":18142,\"journal\":{\"name\":\"Magnetic Resonance in Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/mrc.5537\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/mrc.5537","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本教程中,我们介绍了TrAGICo (Trends Analysis Guided Interfaces Collection),这是一个Python函数集合,用于从布鲁克仪器上获得的1D和伪2d NMR光谱中提取和分析实验参数。我们通过实际例子展示了TrAGICo的应用,强调了它在各种核磁共振应用中的实用性,如提取化学位移温度依赖性,弛豫研究和反应监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extracting Trends From NMR Data With TrAGICo: A Python Toolbox.

In this tutorial, we present TrAGICo (Trends Analysis Guided Interfaces Collection), a Python collection of functions for the extraction and analysis of experimental parameters from 1D and pseudo-2D NMR spectra acquired on Bruker instruments. We demonstrate the application of TrAGICo through practical examples, highlighting its utility for various NMR applications, such as extraction of the chemical shift temperature dependence, relaxation studies, and reaction monitoring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
10.00%
发文量
99
审稿时长
1 months
期刊介绍: MRC is devoted to the rapid publication of papers which are concerned with the development of magnetic resonance techniques, or in which the application of such techniques plays a pivotal part. Contributions from scientists working in all areas of NMR, ESR and NQR are invited, and papers describing applications in all branches of chemistry, structural biology and materials chemistry are published. The journal is of particular interest not only to scientists working in academic research, but also those working in commercial organisations who need to keep up-to-date with the latest practical applications of magnetic resonance techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信