成人暴露于细颗粒物与炎症相关的免疫细胞基因表达、电子传递链和细胞周期调节有关。

IF 4.8 Q1 GENETICS & HEREDITY
Environmental Epigenetics Pub Date : 2025-04-01 eCollection Date: 2025-01-01 DOI:10.1093/eep/dvaf008
Amanda Rundblad, Siddhartha Das, Bigina N R Ginos, Jason Matthews, Kirsten B Holven, Trudy Voortman, Stine M Ulven
{"title":"成人暴露于细颗粒物与炎症相关的免疫细胞基因表达、电子传递链和细胞周期调节有关。","authors":"Amanda Rundblad, Siddhartha Das, Bigina N R Ginos, Jason Matthews, Kirsten B Holven, Trudy Voortman, Stine M Ulven","doi":"10.1093/eep/dvaf008","DOIUrl":null,"url":null,"abstract":"<p><p>Exposure to air pollution and an unhealthy built environment increase disease risk by impacting metabolic risk factors and inflammation, potentially via epigenetic modifications and effects on gene expression. We aimed to explore associations between fine particulate matter (PM<sub>2.5</sub>), black carbon, ozone, nitrogen dioxide, distance to nearest water body, normalized difference vegetation index, and impervious surface and gene expression profiles in adults. This study is a part of the LongITools project and includes cross-sectional data from the Rotterdam Study, a population-based cohort study, and NoMa, a randomized controlled trial. Environmental exposures were assigned using land-use regression (LUR) models and satellite data. Gene expression was assessed with whole blood RNA sequencing (Rotterdam Study, <i>n</i> = 758) and microarray analyses in peripheral blood mononuclear cells (NoMa, <i>n</i> = 100). We analysed transcriptomic profiles and enriched pathways associated with each of the environmental exposures. PM<sub>2.5</sub> had the strongest gene expression associations, while only a few significant associations were observed for the other environmental exposures. In both populations, exposure to PM<sub>2.5</sub> was associated with genes and pathways related to inflammation, oxidative stress, DNA metabolism, cell cycle regulation, histones, electron transport chain, oxidative phosphorylation, and neural signalling. This study is limited by different methods for RNA quantification, a cross-sectional design, and a small sample size. However, in both populations, exposure to PM<sub>2.5</sub> resulted in the maximum number of associations with gene expression. In conclusion, PM<sub>2.5</sub> is strongly associated with various gene expression profiles, which provide information about the underlying mechanisms of the detrimental health effects of exposure to PM<sub>2.5</sub>.</p>","PeriodicalId":11774,"journal":{"name":"Environmental Epigenetics","volume":"11 1","pages":"dvaf008"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12159804/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exposure to fine particulate matter in adults is associated with immune cell gene expression related to inflammation, the electron transport chain, and cell cycle regulation.\",\"authors\":\"Amanda Rundblad, Siddhartha Das, Bigina N R Ginos, Jason Matthews, Kirsten B Holven, Trudy Voortman, Stine M Ulven\",\"doi\":\"10.1093/eep/dvaf008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exposure to air pollution and an unhealthy built environment increase disease risk by impacting metabolic risk factors and inflammation, potentially via epigenetic modifications and effects on gene expression. We aimed to explore associations between fine particulate matter (PM<sub>2.5</sub>), black carbon, ozone, nitrogen dioxide, distance to nearest water body, normalized difference vegetation index, and impervious surface and gene expression profiles in adults. This study is a part of the LongITools project and includes cross-sectional data from the Rotterdam Study, a population-based cohort study, and NoMa, a randomized controlled trial. Environmental exposures were assigned using land-use regression (LUR) models and satellite data. Gene expression was assessed with whole blood RNA sequencing (Rotterdam Study, <i>n</i> = 758) and microarray analyses in peripheral blood mononuclear cells (NoMa, <i>n</i> = 100). We analysed transcriptomic profiles and enriched pathways associated with each of the environmental exposures. PM<sub>2.5</sub> had the strongest gene expression associations, while only a few significant associations were observed for the other environmental exposures. In both populations, exposure to PM<sub>2.5</sub> was associated with genes and pathways related to inflammation, oxidative stress, DNA metabolism, cell cycle regulation, histones, electron transport chain, oxidative phosphorylation, and neural signalling. This study is limited by different methods for RNA quantification, a cross-sectional design, and a small sample size. However, in both populations, exposure to PM<sub>2.5</sub> resulted in the maximum number of associations with gene expression. In conclusion, PM<sub>2.5</sub> is strongly associated with various gene expression profiles, which provide information about the underlying mechanisms of the detrimental health effects of exposure to PM<sub>2.5</sub>.</p>\",\"PeriodicalId\":11774,\"journal\":{\"name\":\"Environmental Epigenetics\",\"volume\":\"11 1\",\"pages\":\"dvaf008\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12159804/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Epigenetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/eep/dvaf008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Epigenetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/eep/dvaf008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

暴露于空气污染和不健康的建筑环境中,可能通过表观遗传修饰和对基因表达的影响,影响代谢风险因素和炎症,从而增加疾病风险。我们的目的是探讨细颗粒物(PM2.5)、黑碳、臭氧、二氧化氮、与最近水体的距离、归一化植被指数、不透水表面和成人基因表达谱之间的关系。该研究是经度项目的一部分,包括来自鹿特丹研究(一项基于人群的队列研究)和NoMa(一项随机对照试验)的横断面数据。利用土地利用回归(LUR)模型和卫星数据确定环境暴露。采用全血RNA测序(鹿特丹研究,n = 758)和外周血单个核细胞(NoMa, n = 100)的微阵列分析评估基因表达。我们分析了与每种环境暴露相关的转录组谱和富集途径。PM2.5具有最强的基因表达相关性,而其他环境暴露仅观察到少数显著相关性。在这两个人群中,PM2.5暴露与炎症、氧化应激、DNA代谢、细胞周期调节、组蛋白、电子传递链、氧化磷酸化和神经信号传导相关的基因和途径有关。本研究受到不同的RNA定量方法、横断面设计和小样本量的限制。然而,在这两个人群中,暴露于PM2.5与基因表达的关联最大。总之,PM2.5与多种基因表达谱密切相关,这为暴露于PM2.5有害健康影响的潜在机制提供了信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exposure to fine particulate matter in adults is associated with immune cell gene expression related to inflammation, the electron transport chain, and cell cycle regulation.

Exposure to air pollution and an unhealthy built environment increase disease risk by impacting metabolic risk factors and inflammation, potentially via epigenetic modifications and effects on gene expression. We aimed to explore associations between fine particulate matter (PM2.5), black carbon, ozone, nitrogen dioxide, distance to nearest water body, normalized difference vegetation index, and impervious surface and gene expression profiles in adults. This study is a part of the LongITools project and includes cross-sectional data from the Rotterdam Study, a population-based cohort study, and NoMa, a randomized controlled trial. Environmental exposures were assigned using land-use regression (LUR) models and satellite data. Gene expression was assessed with whole blood RNA sequencing (Rotterdam Study, n = 758) and microarray analyses in peripheral blood mononuclear cells (NoMa, n = 100). We analysed transcriptomic profiles and enriched pathways associated with each of the environmental exposures. PM2.5 had the strongest gene expression associations, while only a few significant associations were observed for the other environmental exposures. In both populations, exposure to PM2.5 was associated with genes and pathways related to inflammation, oxidative stress, DNA metabolism, cell cycle regulation, histones, electron transport chain, oxidative phosphorylation, and neural signalling. This study is limited by different methods for RNA quantification, a cross-sectional design, and a small sample size. However, in both populations, exposure to PM2.5 resulted in the maximum number of associations with gene expression. In conclusion, PM2.5 is strongly associated with various gene expression profiles, which provide information about the underlying mechanisms of the detrimental health effects of exposure to PM2.5.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Epigenetics
Environmental Epigenetics GENETICS & HEREDITY-
CiteScore
6.50
自引率
5.30%
发文量
0
审稿时长
17 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信