网络流行病中涌现的时空异质性:由拓扑和移动性驱动的图灵不稳定性。

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-06-01 DOI:10.1063/5.0272926
Xinyu Wang, Yao Fan, Deyu Cui, Chen Li, Zhibo Qian, Niuniu Sun, Xiangfeng Dai
{"title":"网络流行病中涌现的时空异质性:由拓扑和移动性驱动的图灵不稳定性。","authors":"Xinyu Wang, Yao Fan, Deyu Cui, Chen Li, Zhibo Qian, Niuniu Sun, Xiangfeng Dai","doi":"10.1063/5.0272926","DOIUrl":null,"url":null,"abstract":"<p><p>While pattern formation in reaction-diffusion systems has been widely explored for epidemics in continuous media, its manifestation in networked populations remains poorly understood. We propose a theoretical framework integrating metapopulation networks with susceptible-infected-susceptible epidemic dynamics, revealing how topology and mobility jointly drive emergent spatiotemporal heterogeneity through Turing instability. Linear stability analysis identifies critical thresholds where eigenvector localization in scale-free networks amplifies heterogeneity by destabilizing low-degree nodes. Numerical simulations demonstrate that an infection rate (β) governs epidemic magnitude and pattern geometry, while a network degree distribution shapes a hierarchical phenomenon. Analytical solutions quantify how hub nodes suppress local instability, yet enhance global transmission. This work establishes Turing mechanisms as fundamental to networked epidemic patterns, bridging network science with reaction-diffusion theory. Our findings offer predictive tools for identifying high-risk zones in real-world mobility systems and informing targeted intervention strategies.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergent spatiotemporal heterogeneity in networked epidemics: Turing instability driven by topology and mobility.\",\"authors\":\"Xinyu Wang, Yao Fan, Deyu Cui, Chen Li, Zhibo Qian, Niuniu Sun, Xiangfeng Dai\",\"doi\":\"10.1063/5.0272926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While pattern formation in reaction-diffusion systems has been widely explored for epidemics in continuous media, its manifestation in networked populations remains poorly understood. We propose a theoretical framework integrating metapopulation networks with susceptible-infected-susceptible epidemic dynamics, revealing how topology and mobility jointly drive emergent spatiotemporal heterogeneity through Turing instability. Linear stability analysis identifies critical thresholds where eigenvector localization in scale-free networks amplifies heterogeneity by destabilizing low-degree nodes. Numerical simulations demonstrate that an infection rate (β) governs epidemic magnitude and pattern geometry, while a network degree distribution shapes a hierarchical phenomenon. Analytical solutions quantify how hub nodes suppress local instability, yet enhance global transmission. This work establishes Turing mechanisms as fundamental to networked epidemic patterns, bridging network science with reaction-diffusion theory. Our findings offer predictive tools for identifying high-risk zones in real-world mobility systems and informing targeted intervention strategies.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 6\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0272926\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0272926","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

虽然反应-扩散系统中的模式形成已被广泛探索,但其在网络人群中的表现仍然知之甚少。我们提出了一个理论框架,将元人口网络与易感者-被感染者-易感者的流行病动力学相结合,揭示了拓扑和流动性如何通过图灵不稳定性共同驱动出现的时空异质性。线性稳定性分析确定了临界阈值,其中无标度网络中的特征向量定位通过破坏低度节点的稳定性来放大异质性。数值模拟表明,感染率(β)决定了流行病的规模和模式几何形状,而网络度分布形成了分层现象。分析解决方案量化集线器节点如何抑制局部不稳定,同时增强全球传输。这项工作建立了图灵机制作为网络流行病模式的基础,将网络科学与反应扩散理论联系起来。我们的研究结果为识别现实世界移动系统中的高风险区域和告知有针对性的干预策略提供了预测工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emergent spatiotemporal heterogeneity in networked epidemics: Turing instability driven by topology and mobility.

While pattern formation in reaction-diffusion systems has been widely explored for epidemics in continuous media, its manifestation in networked populations remains poorly understood. We propose a theoretical framework integrating metapopulation networks with susceptible-infected-susceptible epidemic dynamics, revealing how topology and mobility jointly drive emergent spatiotemporal heterogeneity through Turing instability. Linear stability analysis identifies critical thresholds where eigenvector localization in scale-free networks amplifies heterogeneity by destabilizing low-degree nodes. Numerical simulations demonstrate that an infection rate (β) governs epidemic magnitude and pattern geometry, while a network degree distribution shapes a hierarchical phenomenon. Analytical solutions quantify how hub nodes suppress local instability, yet enhance global transmission. This work establishes Turing mechanisms as fundamental to networked epidemic patterns, bridging network science with reaction-diffusion theory. Our findings offer predictive tools for identifying high-risk zones in real-world mobility systems and informing targeted intervention strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信