Shuyin Li, Jason W Shapiro, Hardik Shah, Emily F Higgs, Lishi Xie, Yaopeng Li, Yuanyuan Zha, Jonathan Trujillo, Alexandra Cabanov, Tyler A Jones, Blake Flood, Ken Hatogai, Ruxandra Tonea, Justin Kline, Thomas F Gajewski
{"title":"肿瘤细胞内生性Decr2调节铁下垂和免疫治疗效果。","authors":"Shuyin Li, Jason W Shapiro, Hardik Shah, Emily F Higgs, Lishi Xie, Yaopeng Li, Yuanyuan Zha, Jonathan Trujillo, Alexandra Cabanov, Tyler A Jones, Blake Flood, Ken Hatogai, Ruxandra Tonea, Justin Kline, Thomas F Gajewski","doi":"10.1158/2326-6066.CIR-24-0519","DOIUrl":null,"url":null,"abstract":"<p><p>Immune checkpoint blockade therapies have transformed the landscape of cancer care, but durable clinical responses are achieved in only a subset of patients. To identify genes that can contribute to immunotherapy resistance, a genome-wide CRISPR screen was performed. Selection for mutants that are resistant to T cell-mediated killing identified the gene encoding Decr2, a peroxisomal 2,4-dienoyl-CoA reductase. We show that Decr2 in tumor cells participates in CD8+ T cell-mediated tumor cell killing and that Decr2 knockdown reduces the efficacy of anti-PD-L1 therapy in vivo. Knocking down Decr2 expression resulted in diminished ferroptosis that was associated with reduced induction of polyunsaturated ether phospholipids. Analysis of tumor RNA sequencing data from patients with melanoma revealed that upregulation of Decr2 was associated with anti-PD-1 efficacy, and patients with Decr2 gene deletions showed worse clinical outcomes. Our results identify Decr2 as a regulator of immunomediated tumor cell killing, with implications for improving immunotherapy efficacy.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"1284-1302"},"PeriodicalIF":8.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314507/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tumor Cell-Intrinsic Decr2 Regulates Ferroptosis and Immunotherapy Efficacy.\",\"authors\":\"Shuyin Li, Jason W Shapiro, Hardik Shah, Emily F Higgs, Lishi Xie, Yaopeng Li, Yuanyuan Zha, Jonathan Trujillo, Alexandra Cabanov, Tyler A Jones, Blake Flood, Ken Hatogai, Ruxandra Tonea, Justin Kline, Thomas F Gajewski\",\"doi\":\"10.1158/2326-6066.CIR-24-0519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immune checkpoint blockade therapies have transformed the landscape of cancer care, but durable clinical responses are achieved in only a subset of patients. To identify genes that can contribute to immunotherapy resistance, a genome-wide CRISPR screen was performed. Selection for mutants that are resistant to T cell-mediated killing identified the gene encoding Decr2, a peroxisomal 2,4-dienoyl-CoA reductase. We show that Decr2 in tumor cells participates in CD8+ T cell-mediated tumor cell killing and that Decr2 knockdown reduces the efficacy of anti-PD-L1 therapy in vivo. Knocking down Decr2 expression resulted in diminished ferroptosis that was associated with reduced induction of polyunsaturated ether phospholipids. Analysis of tumor RNA sequencing data from patients with melanoma revealed that upregulation of Decr2 was associated with anti-PD-1 efficacy, and patients with Decr2 gene deletions showed worse clinical outcomes. Our results identify Decr2 as a regulator of immunomediated tumor cell killing, with implications for improving immunotherapy efficacy.</p>\",\"PeriodicalId\":9474,\"journal\":{\"name\":\"Cancer immunology research\",\"volume\":\" \",\"pages\":\"1284-1302\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314507/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer immunology research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/2326-6066.CIR-24-0519\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-24-0519","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Tumor Cell-Intrinsic Decr2 Regulates Ferroptosis and Immunotherapy Efficacy.
Immune checkpoint blockade therapies have transformed the landscape of cancer care, but durable clinical responses are achieved in only a subset of patients. To identify genes that can contribute to immunotherapy resistance, a genome-wide CRISPR screen was performed. Selection for mutants that are resistant to T cell-mediated killing identified the gene encoding Decr2, a peroxisomal 2,4-dienoyl-CoA reductase. We show that Decr2 in tumor cells participates in CD8+ T cell-mediated tumor cell killing and that Decr2 knockdown reduces the efficacy of anti-PD-L1 therapy in vivo. Knocking down Decr2 expression resulted in diminished ferroptosis that was associated with reduced induction of polyunsaturated ether phospholipids. Analysis of tumor RNA sequencing data from patients with melanoma revealed that upregulation of Decr2 was associated with anti-PD-1 efficacy, and patients with Decr2 gene deletions showed worse clinical outcomes. Our results identify Decr2 as a regulator of immunomediated tumor cell killing, with implications for improving immunotherapy efficacy.
期刊介绍:
Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes.
Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.