HSP抑制剂通过抑制HSP90AB4P假基因和HSPB1表达使耐药MCF-7细胞对阿霉素敏感。

IF 2.6 4区 医学 Q3 CHEMISTRY, MEDICINAL
Kubra Acikalin Coskun, Lütfi Tutar, Elif Cansu Abay, Levent Gülüm, Ayşe Büşranur Çelik, Mehmet Gumus, İrfan Koca, Yusuf Tutar
{"title":"HSP抑制剂通过抑制HSP90AB4P假基因和HSPB1表达使耐药MCF-7细胞对阿霉素敏感。","authors":"Kubra Acikalin Coskun, Lütfi Tutar, Elif Cansu Abay, Levent Gülüm, Ayşe Büşranur Çelik, Mehmet Gumus, İrfan Koca, Yusuf Tutar","doi":"10.2174/0118715206374072250530103333","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Doxorubicin, a first-line chemotherapeutic agent, often faces resistance in breast cancer subtypes, leading to treatment failure. HSPs (Heat shock proteins), especially HSP90, and their pseudogenes like HSP90AB4P have been implicated in fostering resistance mechanisms by regulating apoptotic and survival pathways in cancer cells. The aim of this study is to investigate how inhibiting HSPs using a novel pyro-salicylic acid derivative (7A) can sensitize doxorubicin-resistant breast cancer cells (MCF-7/ADR) to chemotherapy.</p><p><strong>Methods: </strong>The potential role of HSP inhibitor with doxorubicin at different concentrations was tested to reveal synergetic and additive effects by combination index (CI) analysis. Cell cycle analysis, apoptosis assays, and gene expression profiling via PCR arrays supported the impact of 7A over MCF-7/ADR cells' molecular pathways.</p><p><strong>Results: </strong>HSP inhibitor efficiently suppressed doxorubicin resistance over invasive breast ductal carcinoma and has a synergetic effect. The inhibitor decreases HSP90AB4P and small HSPB1 expression efficiently.</p><p><strong>Conclusion: </strong>Our findings demonstrate that 7A suppresses doxorubicin resistance in MCF-7/ADR cells by reducing the expression of HSP90AB4P and small HSPB1, leading to an increase in apoptosis and cell cycle arrest. The combination of 7A and doxorubicin exhibits a synergistic effect (CI < 1), enhancing cytotoxicity and overcoming resistance mechanisms. The cells are driven to apoptosis and the inhibitor significantly decreases doxorubicin resistance. Targeting HSPB1 and its pseudogene HSP90AB4P with 7A offers a promising therapeutic strategy to overcome doxorubicin resistance in breast cancer.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HSP Inhibitor Sensitize Resistant MCF-7 Cells to Doxorubicin through Suppressing HSP90AB4P Pseudogene and HSPB1 Expression.\",\"authors\":\"Kubra Acikalin Coskun, Lütfi Tutar, Elif Cansu Abay, Levent Gülüm, Ayşe Büşranur Çelik, Mehmet Gumus, İrfan Koca, Yusuf Tutar\",\"doi\":\"10.2174/0118715206374072250530103333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Doxorubicin, a first-line chemotherapeutic agent, often faces resistance in breast cancer subtypes, leading to treatment failure. HSPs (Heat shock proteins), especially HSP90, and their pseudogenes like HSP90AB4P have been implicated in fostering resistance mechanisms by regulating apoptotic and survival pathways in cancer cells. The aim of this study is to investigate how inhibiting HSPs using a novel pyro-salicylic acid derivative (7A) can sensitize doxorubicin-resistant breast cancer cells (MCF-7/ADR) to chemotherapy.</p><p><strong>Methods: </strong>The potential role of HSP inhibitor with doxorubicin at different concentrations was tested to reveal synergetic and additive effects by combination index (CI) analysis. Cell cycle analysis, apoptosis assays, and gene expression profiling via PCR arrays supported the impact of 7A over MCF-7/ADR cells' molecular pathways.</p><p><strong>Results: </strong>HSP inhibitor efficiently suppressed doxorubicin resistance over invasive breast ductal carcinoma and has a synergetic effect. The inhibitor decreases HSP90AB4P and small HSPB1 expression efficiently.</p><p><strong>Conclusion: </strong>Our findings demonstrate that 7A suppresses doxorubicin resistance in MCF-7/ADR cells by reducing the expression of HSP90AB4P and small HSPB1, leading to an increase in apoptosis and cell cycle arrest. The combination of 7A and doxorubicin exhibits a synergistic effect (CI < 1), enhancing cytotoxicity and overcoming resistance mechanisms. The cells are driven to apoptosis and the inhibitor significantly decreases doxorubicin resistance. Targeting HSPB1 and its pseudogene HSP90AB4P with 7A offers a promising therapeutic strategy to overcome doxorubicin resistance in breast cancer.</p>\",\"PeriodicalId\":7934,\"journal\":{\"name\":\"Anti-cancer agents in medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-cancer agents in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0118715206374072250530103333\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer agents in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118715206374072250530103333","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

简介:阿霉素作为一线化疗药物,在乳腺癌亚型中经常面临耐药,导致治疗失败。热休克蛋白(热休克蛋白),特别是热休克蛋白90及其假基因如HSP90AB4P,通过调节癌细胞的凋亡和存活途径,参与促进耐药机制。本研究的目的是研究使用新型焦水杨酸衍生物(7A)抑制热休克蛋白如何使阿霉素耐药乳腺癌细胞(MCF-7/ADR)对化疗敏感。方法:通过联合指数(CI)分析,考察HSP抑制剂与不同浓度阿霉素的协同作用和加性作用。细胞周期分析、细胞凋亡分析和PCR阵列的基因表达谱支持7A对MCF-7/ADR细胞分子通路的影响。结果:HSP抑制剂能有效抑制浸润性乳腺导管癌患者的阿霉素耐药,并具有协同作用。该抑制剂能有效降低HSP90AB4P和小HSPB1的表达。结论:7A通过降低HSP90AB4P和小HSPB1的表达,抑制MCF-7/ADR细胞的阿霉素耐药,导致细胞凋亡增加和细胞周期阻滞。7A与阿霉素联用表现出协同效应(CI < 1),增强细胞毒性,克服耐药机制。细胞被驱动凋亡,抑制剂显著降低阿霉素耐药性。7A靶向HSPB1及其假基因HSP90AB4P为克服乳腺癌阿霉素耐药提供了一种有前景的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HSP Inhibitor Sensitize Resistant MCF-7 Cells to Doxorubicin through Suppressing HSP90AB4P Pseudogene and HSPB1 Expression.

Introduction: Doxorubicin, a first-line chemotherapeutic agent, often faces resistance in breast cancer subtypes, leading to treatment failure. HSPs (Heat shock proteins), especially HSP90, and their pseudogenes like HSP90AB4P have been implicated in fostering resistance mechanisms by regulating apoptotic and survival pathways in cancer cells. The aim of this study is to investigate how inhibiting HSPs using a novel pyro-salicylic acid derivative (7A) can sensitize doxorubicin-resistant breast cancer cells (MCF-7/ADR) to chemotherapy.

Methods: The potential role of HSP inhibitor with doxorubicin at different concentrations was tested to reveal synergetic and additive effects by combination index (CI) analysis. Cell cycle analysis, apoptosis assays, and gene expression profiling via PCR arrays supported the impact of 7A over MCF-7/ADR cells' molecular pathways.

Results: HSP inhibitor efficiently suppressed doxorubicin resistance over invasive breast ductal carcinoma and has a synergetic effect. The inhibitor decreases HSP90AB4P and small HSPB1 expression efficiently.

Conclusion: Our findings demonstrate that 7A suppresses doxorubicin resistance in MCF-7/ADR cells by reducing the expression of HSP90AB4P and small HSPB1, leading to an increase in apoptosis and cell cycle arrest. The combination of 7A and doxorubicin exhibits a synergistic effect (CI < 1), enhancing cytotoxicity and overcoming resistance mechanisms. The cells are driven to apoptosis and the inhibitor significantly decreases doxorubicin resistance. Targeting HSPB1 and its pseudogene HSP90AB4P with 7A offers a promising therapeutic strategy to overcome doxorubicin resistance in breast cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Anti-cancer agents in medicinal chemistry
Anti-cancer agents in medicinal chemistry ONCOLOGY-CHEMISTRY, MEDICINAL
CiteScore
5.10
自引率
3.60%
发文量
323
审稿时长
4-8 weeks
期刊介绍: Formerly: Current Medicinal Chemistry - Anti-Cancer Agents. Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents. Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication. Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信