{"title":"自累积对比图聚类","authors":"Xiaoqiang Yan;Kun Deng;Quan Zou;Zhen Tian;Hui Yu","doi":"10.1109/JAS.2024.125025","DOIUrl":null,"url":null,"abstract":"Contrastive graph clustering (CGC) has become a prominent method for self-supervised representation learning by contrasting augmented graph data pairs. However, the performance of CGC methods critically depends on the choice of data augmentation, which usually limits the capacity of network generalization. Besides, most existing methods characterize positive and negative samples based on the nodes themselves, ignoring the influence of neighbors with different hop numbers on the node. In this study, a novel self-cumulative contrastive graph clustering (SC-CGC) method is devised, which is capable of dynamically adjusting the influence of neighbors with different hops. Our intuition is that better neighbors are closer and distant ones are further away in their feature space, thus we can perform neighbor contrasting without data augmentation. To be specific, SC-CGC relies on two neural networks, i.e., autoencoder network (AE) and graph autoencoder network (GAE), to encode the node information and graph structure, respectively. To make these two networks interact and learn from each other, a dynamic fusion mechanism is devised to transfer the knowledge learned by AE to the corresponding GAE layer by layer. Then, a self-cumulative contrastive loss function is designed to characterize the structural information by dynamically accumulating the influence of the nodes with different hops. Finally, our approach simultaneously refines the representation learning and clustering assignments in a self-supervised manner. Extensive experiments on 8 realistic datasets demonstrate that SC-CGC consistently performs better over SOTA techniques. The code is available at https://github.com/Xiaoqiang-Yan/JAS-SCCGC.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"12 6","pages":"1194-1208"},"PeriodicalIF":19.2000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Cumulative Contrastive Graph Clustering\",\"authors\":\"Xiaoqiang Yan;Kun Deng;Quan Zou;Zhen Tian;Hui Yu\",\"doi\":\"10.1109/JAS.2024.125025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contrastive graph clustering (CGC) has become a prominent method for self-supervised representation learning by contrasting augmented graph data pairs. However, the performance of CGC methods critically depends on the choice of data augmentation, which usually limits the capacity of network generalization. Besides, most existing methods characterize positive and negative samples based on the nodes themselves, ignoring the influence of neighbors with different hop numbers on the node. In this study, a novel self-cumulative contrastive graph clustering (SC-CGC) method is devised, which is capable of dynamically adjusting the influence of neighbors with different hops. Our intuition is that better neighbors are closer and distant ones are further away in their feature space, thus we can perform neighbor contrasting without data augmentation. To be specific, SC-CGC relies on two neural networks, i.e., autoencoder network (AE) and graph autoencoder network (GAE), to encode the node information and graph structure, respectively. To make these two networks interact and learn from each other, a dynamic fusion mechanism is devised to transfer the knowledge learned by AE to the corresponding GAE layer by layer. Then, a self-cumulative contrastive loss function is designed to characterize the structural information by dynamically accumulating the influence of the nodes with different hops. Finally, our approach simultaneously refines the representation learning and clustering assignments in a self-supervised manner. Extensive experiments on 8 realistic datasets demonstrate that SC-CGC consistently performs better over SOTA techniques. The code is available at https://github.com/Xiaoqiang-Yan/JAS-SCCGC.\",\"PeriodicalId\":54230,\"journal\":{\"name\":\"Ieee-Caa Journal of Automatica Sinica\",\"volume\":\"12 6\",\"pages\":\"1194-1208\"},\"PeriodicalIF\":19.2000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieee-Caa Journal of Automatica Sinica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10869318/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10869318/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Contrastive graph clustering (CGC) has become a prominent method for self-supervised representation learning by contrasting augmented graph data pairs. However, the performance of CGC methods critically depends on the choice of data augmentation, which usually limits the capacity of network generalization. Besides, most existing methods characterize positive and negative samples based on the nodes themselves, ignoring the influence of neighbors with different hop numbers on the node. In this study, a novel self-cumulative contrastive graph clustering (SC-CGC) method is devised, which is capable of dynamically adjusting the influence of neighbors with different hops. Our intuition is that better neighbors are closer and distant ones are further away in their feature space, thus we can perform neighbor contrasting without data augmentation. To be specific, SC-CGC relies on two neural networks, i.e., autoencoder network (AE) and graph autoencoder network (GAE), to encode the node information and graph structure, respectively. To make these two networks interact and learn from each other, a dynamic fusion mechanism is devised to transfer the knowledge learned by AE to the corresponding GAE layer by layer. Then, a self-cumulative contrastive loss function is designed to characterize the structural information by dynamically accumulating the influence of the nodes with different hops. Finally, our approach simultaneously refines the representation learning and clustering assignments in a self-supervised manner. Extensive experiments on 8 realistic datasets demonstrate that SC-CGC consistently performs better over SOTA techniques. The code is available at https://github.com/Xiaoqiang-Yan/JAS-SCCGC.
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.