{"title":"比例积分控制器增强的非负潜因子分析模型","authors":"Ye Yuan;Siyang Lu;Xin Luo","doi":"10.1109/JAS.2024.125055","DOIUrl":null,"url":null,"abstract":"A non-negative latent factor (NLF) model is able to be built efficiently via a single latent factor-dependent, non-negative and multiplicative update (SLF-NMU) algorithm for performing precise representation to high-dimensional and incomplete (HDI) matrix from many kinds of big-data-related applications. However, an SLF-NMU algorithm updates a latent factor relying on the current update increment only without considering past learning information, making a resultant model suffer from slow convergence. To address this issue, this study proposes a proportional integral (PI) controller-enhanced NLF (PI-NLF) model with two-fold ideas: 1) Designing an increment refinement (IR) mechanism, which formulates the current and past update increments as the proportional and integral terms of a PI controller, thereby assimilating the past update information into the learning scheme smoothly with high efficiency; 2) Deriving an IR-based SLF-NMU (ISN) algorithm, which updates a latent factor following the principle of an IR mechanism, thus significantly accelerating an NLF model's convergence rate. The simulation results on eight HDI matrices collected by real applications validate that a PI-NLF model outstrips several leading-edge models in both computational efficiency and accuracy when estimating missing data within an HDI matrix. The proposed PI-NLF model can be effectively applied to applications involving HDI matrix like e-commerce system, social network, and cloud service system. The code is available at https://github.com/yuanyeswu/PINLF/blob/mainIPINLF-code.zip.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"12 6","pages":"1246-1259"},"PeriodicalIF":19.2000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Proportional Integral Controller-Enhanced Non-Negative Latent Factor Analysis Model\",\"authors\":\"Ye Yuan;Siyang Lu;Xin Luo\",\"doi\":\"10.1109/JAS.2024.125055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A non-negative latent factor (NLF) model is able to be built efficiently via a single latent factor-dependent, non-negative and multiplicative update (SLF-NMU) algorithm for performing precise representation to high-dimensional and incomplete (HDI) matrix from many kinds of big-data-related applications. However, an SLF-NMU algorithm updates a latent factor relying on the current update increment only without considering past learning information, making a resultant model suffer from slow convergence. To address this issue, this study proposes a proportional integral (PI) controller-enhanced NLF (PI-NLF) model with two-fold ideas: 1) Designing an increment refinement (IR) mechanism, which formulates the current and past update increments as the proportional and integral terms of a PI controller, thereby assimilating the past update information into the learning scheme smoothly with high efficiency; 2) Deriving an IR-based SLF-NMU (ISN) algorithm, which updates a latent factor following the principle of an IR mechanism, thus significantly accelerating an NLF model's convergence rate. The simulation results on eight HDI matrices collected by real applications validate that a PI-NLF model outstrips several leading-edge models in both computational efficiency and accuracy when estimating missing data within an HDI matrix. The proposed PI-NLF model can be effectively applied to applications involving HDI matrix like e-commerce system, social network, and cloud service system. The code is available at https://github.com/yuanyeswu/PINLF/blob/mainIPINLF-code.zip.\",\"PeriodicalId\":54230,\"journal\":{\"name\":\"Ieee-Caa Journal of Automatica Sinica\",\"volume\":\"12 6\",\"pages\":\"1246-1259\"},\"PeriodicalIF\":19.2000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieee-Caa Journal of Automatica Sinica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11036662/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11036662/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A Proportional Integral Controller-Enhanced Non-Negative Latent Factor Analysis Model
A non-negative latent factor (NLF) model is able to be built efficiently via a single latent factor-dependent, non-negative and multiplicative update (SLF-NMU) algorithm for performing precise representation to high-dimensional and incomplete (HDI) matrix from many kinds of big-data-related applications. However, an SLF-NMU algorithm updates a latent factor relying on the current update increment only without considering past learning information, making a resultant model suffer from slow convergence. To address this issue, this study proposes a proportional integral (PI) controller-enhanced NLF (PI-NLF) model with two-fold ideas: 1) Designing an increment refinement (IR) mechanism, which formulates the current and past update increments as the proportional and integral terms of a PI controller, thereby assimilating the past update information into the learning scheme smoothly with high efficiency; 2) Deriving an IR-based SLF-NMU (ISN) algorithm, which updates a latent factor following the principle of an IR mechanism, thus significantly accelerating an NLF model's convergence rate. The simulation results on eight HDI matrices collected by real applications validate that a PI-NLF model outstrips several leading-edge models in both computational efficiency and accuracy when estimating missing data within an HDI matrix. The proposed PI-NLF model can be effectively applied to applications involving HDI matrix like e-commerce system, social network, and cloud service system. The code is available at https://github.com/yuanyeswu/PINLF/blob/mainIPINLF-code.zip.
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.