利用猛禽进行聚变阿尔法能量控制优化

IF 2 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
J. Mitchell , A. Mitra , S. Van Mulders , F.J. Casson , E. Tholerus , K. Kirov , S. Freethy , F.E. Eriksson , C.E. Contré , O. Sauter , M. Lennholm , H. Meyer , STEP Plasma Control Team
{"title":"利用猛禽进行聚变阿尔法能量控制优化","authors":"J. Mitchell ,&nbsp;A. Mitra ,&nbsp;S. Van Mulders ,&nbsp;F.J. Casson ,&nbsp;E. Tholerus ,&nbsp;K. Kirov ,&nbsp;S. Freethy ,&nbsp;F.E. Eriksson ,&nbsp;C.E. Contré ,&nbsp;O. Sauter ,&nbsp;M. Lennholm ,&nbsp;H. Meyer ,&nbsp;STEP Plasma Control Team","doi":"10.1016/j.fusengdes.2025.115202","DOIUrl":null,"url":null,"abstract":"<div><div>The Spherical Tokamak for Energy Production (STEP) is a prototype fusion power plant planned to be operational in the 2040s. STEP’s interaction with the national grid and its responsiveness to demand hinges largely on the effective control of the energy released during the fusion burn phase, i.e., the alpha power, which acts as the dominant form of heating in STEP. This research explores novel trajectory optimisation and control methods to regulate the alpha power, while maintaining other global and local plasma parameters such as internal inductance and safety factor. The RApid Plasma Transport simulatOR (RAPTOR) code is used to self-consistently solve four coupled, 1D PDE equations for poloidal flux diffusion, electron thermal transport, ion thermal transport and electron particle transport. Since STEP has limited space for a central solenoid, the flattop stationary state must be sustained with 100% non-inductive sources (predominately bootstrap current and electron cyclotron heating and current drive). To this end we also introduce a new Dirichlet boundary condition (BC) for the flux diffusion equation which allows the plasma boundary flux to be used as an actuator rather than plasma current (Neumann BC). The RAPTOR code open loop optimisation framework is used to solve this multi-objective, constrained, non-linear, finite-time optimal control problem.</div></div>","PeriodicalId":55133,"journal":{"name":"Fusion Engineering and Design","volume":"219 ","pages":"Article 115202"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fusion alpha power control optimisation using RAPTOR\",\"authors\":\"J. Mitchell ,&nbsp;A. Mitra ,&nbsp;S. Van Mulders ,&nbsp;F.J. Casson ,&nbsp;E. Tholerus ,&nbsp;K. Kirov ,&nbsp;S. Freethy ,&nbsp;F.E. Eriksson ,&nbsp;C.E. Contré ,&nbsp;O. Sauter ,&nbsp;M. Lennholm ,&nbsp;H. Meyer ,&nbsp;STEP Plasma Control Team\",\"doi\":\"10.1016/j.fusengdes.2025.115202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Spherical Tokamak for Energy Production (STEP) is a prototype fusion power plant planned to be operational in the 2040s. STEP’s interaction with the national grid and its responsiveness to demand hinges largely on the effective control of the energy released during the fusion burn phase, i.e., the alpha power, which acts as the dominant form of heating in STEP. This research explores novel trajectory optimisation and control methods to regulate the alpha power, while maintaining other global and local plasma parameters such as internal inductance and safety factor. The RApid Plasma Transport simulatOR (RAPTOR) code is used to self-consistently solve four coupled, 1D PDE equations for poloidal flux diffusion, electron thermal transport, ion thermal transport and electron particle transport. Since STEP has limited space for a central solenoid, the flattop stationary state must be sustained with 100% non-inductive sources (predominately bootstrap current and electron cyclotron heating and current drive). To this end we also introduce a new Dirichlet boundary condition (BC) for the flux diffusion equation which allows the plasma boundary flux to be used as an actuator rather than plasma current (Neumann BC). The RAPTOR code open loop optimisation framework is used to solve this multi-objective, constrained, non-linear, finite-time optimal control problem.</div></div>\",\"PeriodicalId\":55133,\"journal\":{\"name\":\"Fusion Engineering and Design\",\"volume\":\"219 \",\"pages\":\"Article 115202\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fusion Engineering and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920379625003989\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920379625003989","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

用于能源生产的球形托卡马克(STEP)是一个原型聚变发电厂,计划在21世纪40年代投入运行。STEP与国家电网的互动及其对需求的响应在很大程度上取决于对聚变燃烧阶段释放的能量的有效控制,即alpha功率,它是STEP的主要加热形式。本研究探索了新的轨迹优化和控制方法来调节α功率,同时保持其他全局和局部等离子体参数,如内部电感和安全系数。快速等离子体输运模拟器(RAPTOR)代码用于自洽地求解四个耦合的一维偏微分方程,包括极向通量扩散、电子热输运、离子热输运和电子粒子输运。由于STEP对中央螺线管的空间有限,因此必须使用100%的无感源(主要是自引导电流和电子回旋加热和电流驱动)来维持平顶静止状态。为此,我们还引入了一个新的Dirichlet边界条件(BC)用于通量扩散方程,该条件允许等离子体边界通量作为执行器而不是等离子体电流(Neumann BC)。RAPTOR代码开环优化框架用于解决这个多目标、约束、非线性、有限时间的最优控制问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fusion alpha power control optimisation using RAPTOR
The Spherical Tokamak for Energy Production (STEP) is a prototype fusion power plant planned to be operational in the 2040s. STEP’s interaction with the national grid and its responsiveness to demand hinges largely on the effective control of the energy released during the fusion burn phase, i.e., the alpha power, which acts as the dominant form of heating in STEP. This research explores novel trajectory optimisation and control methods to regulate the alpha power, while maintaining other global and local plasma parameters such as internal inductance and safety factor. The RApid Plasma Transport simulatOR (RAPTOR) code is used to self-consistently solve four coupled, 1D PDE equations for poloidal flux diffusion, electron thermal transport, ion thermal transport and electron particle transport. Since STEP has limited space for a central solenoid, the flattop stationary state must be sustained with 100% non-inductive sources (predominately bootstrap current and electron cyclotron heating and current drive). To this end we also introduce a new Dirichlet boundary condition (BC) for the flux diffusion equation which allows the plasma boundary flux to be used as an actuator rather than plasma current (Neumann BC). The RAPTOR code open loop optimisation framework is used to solve this multi-objective, constrained, non-linear, finite-time optimal control problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fusion Engineering and Design
Fusion Engineering and Design 工程技术-核科学技术
CiteScore
3.50
自引率
23.50%
发文量
275
审稿时长
3.8 months
期刊介绍: The journal accepts papers about experiments (both plasma and technology), theory, models, methods, and designs in areas relating to technology, engineering, and applied science aspects of magnetic and inertial fusion energy. Specific areas of interest include: MFE and IFE design studies for experiments and reactors; fusion nuclear technologies and materials, including blankets and shields; analysis of reactor plasmas; plasma heating, fuelling, and vacuum systems; drivers, targets, and special technologies for IFE, controls and diagnostics; fuel cycle analysis and tritium reprocessing and handling; operations and remote maintenance of reactors; safety, decommissioning, and waste management; economic and environmental analysis of components and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信