{"title":"麦胶蛋白增强了应激β细胞引发的巨噬细胞反应","authors":"Tina Zenia Jørgensen , Knud Josefsen , Signe Stentoft Dissing , Karsten Buschard , Julie Christine Antvorskov , Jesper Larsen","doi":"10.1016/j.cellimm.2025.104989","DOIUrl":null,"url":null,"abstract":"<div><div>In humans, a gluten-free diet can slow disease progression and improve clinical outcome in newly diagnosed type 1 diabetes patients. In NOD mice, the incidence of autoimmune diabetes is influenced by both beta cell activity and gluten. Here, we demonstrate that metabolically stressed pancreatic cell lines (MIN6, beta TC3, and alpha TC3) effectively activated macrophage RAW 264.7 cells. Gliadin further enhanced this response in MIN6 cells but had no such effect on beta TC3 or alpha TC3 cells. Additionally, gliadin directly stimulated MIN6 cells, affecting pathways related to cellular activation, stress responses, and immune regulation. These findings provide insights into the in vivo benefits of a gluten-free diet in type 1 diabetes development by highlighting the roles of cellular stress and gliadin in disease progression.</div></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"414 ","pages":"Article 104989"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gliadin amplifies the macrophage response triggered by stressed beta cells\",\"authors\":\"Tina Zenia Jørgensen , Knud Josefsen , Signe Stentoft Dissing , Karsten Buschard , Julie Christine Antvorskov , Jesper Larsen\",\"doi\":\"10.1016/j.cellimm.2025.104989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In humans, a gluten-free diet can slow disease progression and improve clinical outcome in newly diagnosed type 1 diabetes patients. In NOD mice, the incidence of autoimmune diabetes is influenced by both beta cell activity and gluten. Here, we demonstrate that metabolically stressed pancreatic cell lines (MIN6, beta TC3, and alpha TC3) effectively activated macrophage RAW 264.7 cells. Gliadin further enhanced this response in MIN6 cells but had no such effect on beta TC3 or alpha TC3 cells. Additionally, gliadin directly stimulated MIN6 cells, affecting pathways related to cellular activation, stress responses, and immune regulation. These findings provide insights into the in vivo benefits of a gluten-free diet in type 1 diabetes development by highlighting the roles of cellular stress and gliadin in disease progression.</div></div>\",\"PeriodicalId\":9795,\"journal\":{\"name\":\"Cellular immunology\",\"volume\":\"414 \",\"pages\":\"Article 104989\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008874925000759\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008874925000759","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Gliadin amplifies the macrophage response triggered by stressed beta cells
In humans, a gluten-free diet can slow disease progression and improve clinical outcome in newly diagnosed type 1 diabetes patients. In NOD mice, the incidence of autoimmune diabetes is influenced by both beta cell activity and gluten. Here, we demonstrate that metabolically stressed pancreatic cell lines (MIN6, beta TC3, and alpha TC3) effectively activated macrophage RAW 264.7 cells. Gliadin further enhanced this response in MIN6 cells but had no such effect on beta TC3 or alpha TC3 cells. Additionally, gliadin directly stimulated MIN6 cells, affecting pathways related to cellular activation, stress responses, and immune regulation. These findings provide insights into the in vivo benefits of a gluten-free diet in type 1 diabetes development by highlighting the roles of cellular stress and gliadin in disease progression.
期刊介绍:
Cellular Immunology publishes original investigations concerned with the immunological activities of cells in experimental or clinical situations. The scope of the journal encompasses the broad area of in vitro and in vivo studies of cellular immune responses. Purely clinical descriptive studies are not considered.
Research Areas include:
• Antigen receptor sites
• Autoimmunity
• Delayed-type hypersensitivity or cellular immunity
• Immunologic deficiency states and their reconstitution
• Immunologic surveillance and tumor immunity
• Immunomodulation
• Immunotherapy
• Lymphokines and cytokines
• Nonantibody immunity
• Parasite immunology
• Resistance to intracellular microbial and viral infection
• Thymus and lymphocyte immunobiology
• Transplantation immunology
• Tumor immunity.