基于动态时间规整的协方差结构的投资组合优化

IF 7.4 2区 经济学 Q1 BUSINESS, FINANCE
Seokjune Lee , Jaehong Jeong
{"title":"基于动态时间规整的协方差结构的投资组合优化","authors":"Seokjune Lee ,&nbsp;Jaehong Jeong","doi":"10.1016/j.frl.2025.107642","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional covariance structures fail to capture non-linear relationships between assets and are distorted by time lags. We propose a covariance structure using the Dynamic Time Warping (DTW) algorithm for portfolio optimization. Two methods are presented: Transformed DTW, which transforms the DTW distance, and Covariance DTW, which uses a spatial covariance function to parametrically estimate the covariance. Using data from the U.S. stock market, we examine our approach to the Maximum Diversification, Equally Weighted Risk Contribution, and Hierarchical Risk Parity portfolios. The empirical analysis shows improved performance over traditional covariance structures, with lower weight changes during rebalancing.</div></div>","PeriodicalId":12167,"journal":{"name":"Finance Research Letters","volume":"83 ","pages":"Article 107642"},"PeriodicalIF":7.4000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Portfolio optimization using a covariance structure based on dynamic time warping\",\"authors\":\"Seokjune Lee ,&nbsp;Jaehong Jeong\",\"doi\":\"10.1016/j.frl.2025.107642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Traditional covariance structures fail to capture non-linear relationships between assets and are distorted by time lags. We propose a covariance structure using the Dynamic Time Warping (DTW) algorithm for portfolio optimization. Two methods are presented: Transformed DTW, which transforms the DTW distance, and Covariance DTW, which uses a spatial covariance function to parametrically estimate the covariance. Using data from the U.S. stock market, we examine our approach to the Maximum Diversification, Equally Weighted Risk Contribution, and Hierarchical Risk Parity portfolios. The empirical analysis shows improved performance over traditional covariance structures, with lower weight changes during rebalancing.</div></div>\",\"PeriodicalId\":12167,\"journal\":{\"name\":\"Finance Research Letters\",\"volume\":\"83 \",\"pages\":\"Article 107642\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finance Research Letters\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1544612325009018\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finance Research Letters","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1544612325009018","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

传统的协方差结构不能捕捉到资产之间的非线性关系,并且会受到时间滞后的影响。本文提出了一种利用动态时间翘曲(DTW)算法进行投资组合优化的协方差结构。提出了变换DTW和协方差DTW两种方法,前者对DTW距离进行变换,后者利用空间协方差函数对协方差进行参数化估计。使用美国股票市场的数据,我们检验了我们的方法,以最大的多样化,等加权风险贡献,和分层风险平价投资组合。实证分析表明,与传统的协方差结构相比,该结构的性能有所提高,在再平衡过程中权重变化较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Portfolio optimization using a covariance structure based on dynamic time warping
Traditional covariance structures fail to capture non-linear relationships between assets and are distorted by time lags. We propose a covariance structure using the Dynamic Time Warping (DTW) algorithm for portfolio optimization. Two methods are presented: Transformed DTW, which transforms the DTW distance, and Covariance DTW, which uses a spatial covariance function to parametrically estimate the covariance. Using data from the U.S. stock market, we examine our approach to the Maximum Diversification, Equally Weighted Risk Contribution, and Hierarchical Risk Parity portfolios. The empirical analysis shows improved performance over traditional covariance structures, with lower weight changes during rebalancing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Finance Research Letters
Finance Research Letters BUSINESS, FINANCE-
CiteScore
11.10
自引率
14.40%
发文量
863
期刊介绍: Finance Research Letters welcomes submissions across all areas of finance, aiming for rapid publication of significant new findings. The journal particularly encourages papers that provide insight into the replicability of established results, examine the cross-national applicability of previous findings, challenge existing methodologies, or demonstrate methodological contingencies. Papers are invited in the following areas: Actuarial studies Alternative investments Asset Pricing Bankruptcy and liquidation Banks and other Depository Institutions Behavioral and experimental finance Bibliometric and Scientometric studies of finance Capital budgeting and corporate investment Capital markets and accounting Capital structure and payout policy Commodities Contagion, crises and interdependence Corporate governance Credit and fixed income markets and instruments Derivatives Emerging markets Energy Finance and Energy Markets Financial Econometrics Financial History Financial intermediation and money markets Financial markets and marketplaces Financial Mathematics and Econophysics Financial Regulation and Law Forecasting Frontier market studies International Finance Market efficiency, event studies Mergers, acquisitions and the market for corporate control Micro Finance Institutions Microstructure Non-bank Financial Institutions Personal Finance Portfolio choice and investing Real estate finance and investing Risk SME, Family and Entrepreneurial Finance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信