Eleftherios Tzanis, John Stratakis, John Damilakis
{"title":"一种用于CT个体化乳房放射剂量测定的机器学习方法:整合放射组学和深度神经网络","authors":"Eleftherios Tzanis, John Stratakis, John Damilakis","doi":"10.1016/j.ejrad.2025.112236","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>To develop a machine learning-based workflow for patient-specific breast radiation dosimetry in CT.</div></div><div><h3>Materials and Methods</h3><div>Two hundred eighty-six chest CT examinations, with corresponding right and left breast contours, were retrospectively collected from the radiotherapy department at our institution to develop and validate breast segmentation U-Nets. Additionally, Monte Carlo simulations were performed for each CT scan to determine radiation doses to the breasts. The derived breast doses, along with predictors such as X-ray tube current and radiomic features, were then used to train deep neural networks (DNNs) for breast dose prediction.</div></div><div><h3>Results</h3><div>The breast segmentation models achieved a mean dice similarity coefficient of 0.92, with precision and sensitivity scores above 0.90 for both breasts, indicating high segmentation accuracy. The DNNs demonstrated close alignment with ground truth values, with mean predicted doses of 5.05 ± 0.50 mGy for the right breast and 5.06 ± 0.55 mGy for the left breast, compared to ground truth values of 5.03 ± 0.57 mGy and 5.02 ± 0.61 mGy, respectively. The mean absolute percentage errors were 4.01 % (range: 3.90 %–4.12 %) for the right breast and 4.82 % (range: 4.56 %–5.11 %) for the left breast. The mean inference time was 30.2 ± 4.3 s. Statistical analysis showed no significant differences between predicted and actual doses (p ≥ 0.07).</div></div><div><h3>Conclusion</h3><div>This study presents an automated, machine learning-based workflow for breast radiation dosimetry in CT, integrating segmentation and dose prediction models. The models and code are available at: https://github.com/eltzanis/ML-based-Breast-Radiation-Dosimetry-in-CT.</div></div>","PeriodicalId":12063,"journal":{"name":"European Journal of Radiology","volume":"190 ","pages":"Article 112236"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A machine learning approach for personalized breast radiation dosimetry in CT: Integrating radiomics and deep neural networks\",\"authors\":\"Eleftherios Tzanis, John Stratakis, John Damilakis\",\"doi\":\"10.1016/j.ejrad.2025.112236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>To develop a machine learning-based workflow for patient-specific breast radiation dosimetry in CT.</div></div><div><h3>Materials and Methods</h3><div>Two hundred eighty-six chest CT examinations, with corresponding right and left breast contours, were retrospectively collected from the radiotherapy department at our institution to develop and validate breast segmentation U-Nets. Additionally, Monte Carlo simulations were performed for each CT scan to determine radiation doses to the breasts. The derived breast doses, along with predictors such as X-ray tube current and radiomic features, were then used to train deep neural networks (DNNs) for breast dose prediction.</div></div><div><h3>Results</h3><div>The breast segmentation models achieved a mean dice similarity coefficient of 0.92, with precision and sensitivity scores above 0.90 for both breasts, indicating high segmentation accuracy. The DNNs demonstrated close alignment with ground truth values, with mean predicted doses of 5.05 ± 0.50 mGy for the right breast and 5.06 ± 0.55 mGy for the left breast, compared to ground truth values of 5.03 ± 0.57 mGy and 5.02 ± 0.61 mGy, respectively. The mean absolute percentage errors were 4.01 % (range: 3.90 %–4.12 %) for the right breast and 4.82 % (range: 4.56 %–5.11 %) for the left breast. The mean inference time was 30.2 ± 4.3 s. Statistical analysis showed no significant differences between predicted and actual doses (p ≥ 0.07).</div></div><div><h3>Conclusion</h3><div>This study presents an automated, machine learning-based workflow for breast radiation dosimetry in CT, integrating segmentation and dose prediction models. The models and code are available at: https://github.com/eltzanis/ML-based-Breast-Radiation-Dosimetry-in-CT.</div></div>\",\"PeriodicalId\":12063,\"journal\":{\"name\":\"European Journal of Radiology\",\"volume\":\"190 \",\"pages\":\"Article 112236\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0720048X25003225\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0720048X25003225","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
A machine learning approach for personalized breast radiation dosimetry in CT: Integrating radiomics and deep neural networks
Purpose
To develop a machine learning-based workflow for patient-specific breast radiation dosimetry in CT.
Materials and Methods
Two hundred eighty-six chest CT examinations, with corresponding right and left breast contours, were retrospectively collected from the radiotherapy department at our institution to develop and validate breast segmentation U-Nets. Additionally, Monte Carlo simulations were performed for each CT scan to determine radiation doses to the breasts. The derived breast doses, along with predictors such as X-ray tube current and radiomic features, were then used to train deep neural networks (DNNs) for breast dose prediction.
Results
The breast segmentation models achieved a mean dice similarity coefficient of 0.92, with precision and sensitivity scores above 0.90 for both breasts, indicating high segmentation accuracy. The DNNs demonstrated close alignment with ground truth values, with mean predicted doses of 5.05 ± 0.50 mGy for the right breast and 5.06 ± 0.55 mGy for the left breast, compared to ground truth values of 5.03 ± 0.57 mGy and 5.02 ± 0.61 mGy, respectively. The mean absolute percentage errors were 4.01 % (range: 3.90 %–4.12 %) for the right breast and 4.82 % (range: 4.56 %–5.11 %) for the left breast. The mean inference time was 30.2 ± 4.3 s. Statistical analysis showed no significant differences between predicted and actual doses (p ≥ 0.07).
Conclusion
This study presents an automated, machine learning-based workflow for breast radiation dosimetry in CT, integrating segmentation and dose prediction models. The models and code are available at: https://github.com/eltzanis/ML-based-Breast-Radiation-Dosimetry-in-CT.
期刊介绍:
European Journal of Radiology is an international journal which aims to communicate to its readers, state-of-the-art information on imaging developments in the form of high quality original research articles and timely reviews on current developments in the field.
Its audience includes clinicians at all levels of training including radiology trainees, newly qualified imaging specialists and the experienced radiologist. Its aim is to inform efficient, appropriate and evidence-based imaging practice to the benefit of patients worldwide.