{"title":"小聚类聚类编辑问题的逼近算法","authors":"Alexander Kononov , Victor Il’ev","doi":"10.1016/j.disopt.2025.100900","DOIUrl":null,"url":null,"abstract":"<div><div>Clustering is the task of dividing objects into groups (called clusters) so that objects in the same group are similar to each other. The Cluster Editing problem is one of the most natural ways to model clustering on graphs. In this problem, the similarity relation between objects is given by an undirected graph whose vertices correspond to the objects, edges connect couples of similar objects, and it is required to partition the set of vertices into disjoint subsets minimizing the number of edges between clusters and the number of missing edges within clusters. We present new approximation algorithms with better worst-case performance guarantees when cluster sizes are upper bounded by three or four vertices.</div></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"57 ","pages":"Article 100900"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation algorithms for the cluster editing problem with small clusters\",\"authors\":\"Alexander Kononov , Victor Il’ev\",\"doi\":\"10.1016/j.disopt.2025.100900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Clustering is the task of dividing objects into groups (called clusters) so that objects in the same group are similar to each other. The Cluster Editing problem is one of the most natural ways to model clustering on graphs. In this problem, the similarity relation between objects is given by an undirected graph whose vertices correspond to the objects, edges connect couples of similar objects, and it is required to partition the set of vertices into disjoint subsets minimizing the number of edges between clusters and the number of missing edges within clusters. We present new approximation algorithms with better worst-case performance guarantees when cluster sizes are upper bounded by three or four vertices.</div></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":\"57 \",\"pages\":\"Article 100900\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528625000234\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528625000234","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Approximation algorithms for the cluster editing problem with small clusters
Clustering is the task of dividing objects into groups (called clusters) so that objects in the same group are similar to each other. The Cluster Editing problem is one of the most natural ways to model clustering on graphs. In this problem, the similarity relation between objects is given by an undirected graph whose vertices correspond to the objects, edges connect couples of similar objects, and it is required to partition the set of vertices into disjoint subsets minimizing the number of edges between clusters and the number of missing edges within clusters. We present new approximation algorithms with better worst-case performance guarantees when cluster sizes are upper bounded by three or four vertices.
期刊介绍:
Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.