大型薄壁镍基高温合金燃烧室壳体反重力调压铸造工艺数值模拟优化

IF 6.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhengye Zhang , Yunwei Pan , Anping Dong , Zhongfeng Chen , Dashan Sui
{"title":"大型薄壁镍基高温合金燃烧室壳体反重力调压铸造工艺数值模拟优化","authors":"Zhengye Zhang ,&nbsp;Yunwei Pan ,&nbsp;Anping Dong ,&nbsp;Zhongfeng Chen ,&nbsp;Dashan Sui","doi":"10.1016/j.jmrt.2025.06.091","DOIUrl":null,"url":null,"abstract":"<div><div>With the increasing demand for high thrust-to-weight ratio in aerospace engines, the production of Ni-based superalloy castings with large, thin-wall structures has become increasingly critical. This study utilizes ProCast software to optimize the counter-gravity adjusted-pressure casting (APC) process for fabricating a Ni-based superalloy combustion chamber casing with complex thin-wall geometries. According to shrinkage porosity prediction results, the optimized APC process parameters are determined (pouring temperature of 1530 °C, holding pressure of 25 kPa, and initial mold temperature of 1000 °C). Filling simulations conducted under the optimized parameters reveal a stable three-stage filling sequence: (1) the bottom horizontal region filling; (2) thin-wall region filling; (3) difficult-to-fill region filling. Solidification simulations demonstrate delayed cooling at deep recesses of inner and outer rings due to reduced heat transfer rates. Microstructural characterization indicates finer grains and γ′ precipitates in thin-wall regions compared to flange regions, correlating with enhanced yield strength (529 MPa–588 MPa) in thin-wall sections. This study provides valuable insights into the optimization of APC process for large, thin-wall Ni-based superalloy components.</div></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"37 ","pages":"Pages 1029-1040"},"PeriodicalIF":6.2000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation-driven optimization of the counter-gravity adjusted-pressure casting process for large thin-wall Ni-based superalloy combustion chamber casings\",\"authors\":\"Zhengye Zhang ,&nbsp;Yunwei Pan ,&nbsp;Anping Dong ,&nbsp;Zhongfeng Chen ,&nbsp;Dashan Sui\",\"doi\":\"10.1016/j.jmrt.2025.06.091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the increasing demand for high thrust-to-weight ratio in aerospace engines, the production of Ni-based superalloy castings with large, thin-wall structures has become increasingly critical. This study utilizes ProCast software to optimize the counter-gravity adjusted-pressure casting (APC) process for fabricating a Ni-based superalloy combustion chamber casing with complex thin-wall geometries. According to shrinkage porosity prediction results, the optimized APC process parameters are determined (pouring temperature of 1530 °C, holding pressure of 25 kPa, and initial mold temperature of 1000 °C). Filling simulations conducted under the optimized parameters reveal a stable three-stage filling sequence: (1) the bottom horizontal region filling; (2) thin-wall region filling; (3) difficult-to-fill region filling. Solidification simulations demonstrate delayed cooling at deep recesses of inner and outer rings due to reduced heat transfer rates. Microstructural characterization indicates finer grains and γ′ precipitates in thin-wall regions compared to flange regions, correlating with enhanced yield strength (529 MPa–588 MPa) in thin-wall sections. This study provides valuable insights into the optimization of APC process for large, thin-wall Ni-based superalloy components.</div></div>\",\"PeriodicalId\":54332,\"journal\":{\"name\":\"Journal of Materials Research and Technology-Jmr&t\",\"volume\":\"37 \",\"pages\":\"Pages 1029-1040\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research and Technology-Jmr&t\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2238785425015133\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785425015133","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着航空发动机对高推重比要求的不断提高,大型薄壁结构镍基高温合金铸件的生产变得越来越重要。本研究利用ProCast软件优化了反重力调压铸造(APC)工艺,以制造具有复杂薄壁几何形状的镍基高温合金燃烧室壳体。根据缩孔率预测结果,确定了优化后的APC工艺参数(浇注温度1530℃,保压压力25 kPa,初模温度1000℃)。在优化参数下进行的充填模拟表明,充填顺序为稳定的三阶段:(1)底部水平区域充填;(2)薄壁区域填充;(3)难以填充区域填充。凝固模拟表明,由于传热速率降低,内环和外环深凹处的冷却延迟。显微组织表征表明,与法兰区相比,薄壁区晶粒和γ′析出物更细,从而提高了薄壁截面的屈服强度(529 MPa - 588 MPa)。该研究为大型薄壁镍基高温合金部件的APC工艺优化提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical simulation-driven optimization of the counter-gravity adjusted-pressure casting process for large thin-wall Ni-based superalloy combustion chamber casings
With the increasing demand for high thrust-to-weight ratio in aerospace engines, the production of Ni-based superalloy castings with large, thin-wall structures has become increasingly critical. This study utilizes ProCast software to optimize the counter-gravity adjusted-pressure casting (APC) process for fabricating a Ni-based superalloy combustion chamber casing with complex thin-wall geometries. According to shrinkage porosity prediction results, the optimized APC process parameters are determined (pouring temperature of 1530 °C, holding pressure of 25 kPa, and initial mold temperature of 1000 °C). Filling simulations conducted under the optimized parameters reveal a stable three-stage filling sequence: (1) the bottom horizontal region filling; (2) thin-wall region filling; (3) difficult-to-fill region filling. Solidification simulations demonstrate delayed cooling at deep recesses of inner and outer rings due to reduced heat transfer rates. Microstructural characterization indicates finer grains and γ′ precipitates in thin-wall regions compared to flange regions, correlating with enhanced yield strength (529 MPa–588 MPa) in thin-wall sections. This study provides valuable insights into the optimization of APC process for large, thin-wall Ni-based superalloy components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Research and Technology-Jmr&t
Journal of Materials Research and Technology-Jmr&t Materials Science-Metals and Alloys
CiteScore
8.80
自引率
9.40%
发文量
1877
审稿时长
35 days
期刊介绍: The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信