Miguel Bernecker , Magali Bonifacie , Philip Staudigel , Niels Meijer , Julien Siebert , Nicolas Wehr , Eiken Haussühl , Stefano M. Bernasconi , Daniel A. Petrash , Martin Dietzel , Jens Fiebig
{"title":"矿物学对分析分辨率下碳酸盐衍生CO2 Δ47和Δ48的影响","authors":"Miguel Bernecker , Magali Bonifacie , Philip Staudigel , Niels Meijer , Julien Siebert , Nicolas Wehr , Eiken Haussühl , Stefano M. Bernasconi , Daniel A. Petrash , Martin Dietzel , Jens Fiebig","doi":"10.1016/j.gca.2025.06.004","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the lack of direct methods capable of determining the abundance of isotopologues containing multiple heavy isotopes within the crystal lattice, carbonates are typically reacted with phosphoric acid to produce CO<sub>2</sub> analyte for clumped isotope analyses. This reaction is associated with fractionations of both bulk oxygen and clumped isotopes. Accurate knowledge of the effect of cation substitution on the degree of isotopic clumping in the carbonate phase (<span><math><mrow><msub><mi>Δ</mi><mn>63</mn></msub></mrow></math></span>, <span><math><mrow><msub><mi>Δ</mi><mn>64</mn></msub></mrow></math></span>) and on acid fractionation factors (<span><math><mrow><msubsup><mi>Δ</mi><mrow><mn>47</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span>, <span><math><mrow><msubsup><mi>Δ</mi><mrow><mn>48</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span>) is crucial for accurate temperature reconstructions based on clumped isotope measurements (<span><math><mrow><msub><mi>Δ</mi><mn>47</mn></msub></mrow></math></span>, <span><math><mrow><msub><mi>Δ</mi><mn>48</mn></msub></mrow></math></span>) of CO<sub>2</sub> extracted from various carbonate mineralogies. Previous studies have yielded contradicting results on the effect of carbonate mineralogy on both <span><math><mrow><msubsup><mi>Δ</mi><mrow><mn>47</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span> acid fractionation factors and the validity of a universal <span><math><mrow><msub><mi>Δ</mi><mn>47</mn></msub></mrow></math></span>−T relationship, and, so far, a systematic investigation of mineralogy-specific effects on <span><math><mrow><msub><mi>Δ</mi><mn>48</mn></msub></mrow></math></span> and <span><math><mrow><msubsup><mi>Δ</mi><mrow><mn>48</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span> is lacking.</div><div>In this study, we have analyzed the dual clumped isotope composition of stochastic and non-stochastic calcites, aragonites, dolomites, witherites‚ and siderites with unprecedented long-term repeatabilities (1SDs) of 8.6 and 28.1 ppm for <span><math><mrow><msub><mi>Δ</mi><mn>47</mn></msub></mrow></math></span> and <span><math><mrow><msub><mi>Δ</mi><mn>48</mn></msub></mrow></math></span>, respectively. In order to facilitate complete acid digestion of dolomite and siderite in a reasonable timeframe, an acid digestion temperature of 110 °C was used for these minerals instead of the 90 °C applied to calcite, aragonite and witherite. A set of calcite samples was reacted at both temperatures to determine the calcite-specific difference in acid digestion-related fractionation factors between 90 and 110 °C, yielding <span><math><mrow><msubsup><mi>Δ</mi><mrow><mn>47</mn><mo>,</mo><mn>110</mn><mo>-</mo><msup><mn>90</mn><mo>°</mo></msup><mi>C</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span> = -0.0147 ± 0.002 % and <span><math><mrow><msubsup><mi>Δ</mi><mrow><mn>48</mn><mo>,</mo><mn>110</mn><mo>-</mo><msup><mn>90</mn><mo>°</mo></msup><mi>C</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span> = -0.0148 ± 0.006 ‰ (2SEs, n = 8). After projecting <span><math><mrow><msub><mi>Δ</mi><mn>47</mn></msub></mrow></math></span> and <span><math><mrow><msub><mi>Δ</mi><mn>48</mn></msub></mrow></math></span> results from stochastic dolomite and siderite to the carbon dioxide equilibrium scale (CDES90) using the calcite-specific <span><math><mrow><msubsup><mi>Δ</mi><mrow><mi>i</mi><mo>,</mo><mn>110</mn><mo>-</mo><msup><mn>90</mn><mo>°</mo></msup><mi>C</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span>, calcite, aragonite, dolomite, witherite and siderite exhibit statistically indistinguishable <span><math><mrow><msub><mi>Δ</mi><mrow><mn>47</mn><mo>,</mo><mi>C</mi><mi>D</mi><mi>E</mi><mi>S</mi><mn>90</mn></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mi>Δ</mi><mrow><mn>48</mn><mo>,</mo><mi>C</mi><mi>D</mi><mi>E</mi><mi>S</mi><mn>90</mn></mrow></msub></mrow></math></span> values, with weighted averages of 0.1850 ± 0.0042 ‰ and 0.1255 ± 0.0130 ‰ (weighted 2SEs, n = 15), respectively. In addition, <span><math><mrow><msub><mi>Δ</mi><mrow><mn>47</mn><mo>,</mo><mi>C</mi><mi>D</mi><mi>E</mi><mi>S</mi><mn>90</mn></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mi>Δ</mi><mrow><mn>48</mn><mo>,</mo><mi>C</mi><mi>D</mi><mi>E</mi><mi>S</mi><mn>90</mn></mrow></msub></mrow></math></span> values of non-stochastic aragonites (n = 2), (proto-)dolomites (n = 2) and witherite (n = 1) correspond to calcite equilibrium values predicted by their independently known formation temperatures (<span><span>Fiebig et al., 2024</span></span>). Natural dolomites and siderites of unknown formation temperature are also indistinguishable from the calcite equilibrium line. Overall, these results imply that calcite, aragonite, dolomite and witherite share indistinguishable <span><math><mrow><msubsup><mi>Δ</mi><mrow><mn>47</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span>, <span><math><mrow><msubsup><mi>Δ</mi><mrow><mn>48</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span> and <span><math><mrow><msub><mi>Δ</mi><mn>63</mn></msub></mrow></math></span>−<span><math><mrow><msub><mi>Δ</mi><mn>64</mn></msub></mrow></math></span>−T relationships. As a consequence, the calcite-specific equilibrium <span><math><mrow><msub><mi>Δ</mi><mrow><mn>47</mn><mo>,</mo><mi>C</mi><mi>D</mi><mi>E</mi><mi>S</mi><mn>90</mn></mrow></msub></mrow></math></span>−<span><math><mrow><msub><mi>Δ</mi><mrow><mn>48</mn><mo>,</mo><mi>C</mi><mi>D</mi><mi>E</mi><mi>S</mi><mn>90</mn></mrow></msub></mrow></math></span>−T relationships of <span><span>Fiebig et al. (2024)</span></span> can be reliably applied to aragonite, dolomite, and witherite. More precipitation experiments under controlled conditions are necessary to clarify with more confidence if these relationships are also valid for siderite.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"401 ","pages":"Pages 89-103"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of mineralogy on Δ47 and Δ48 of carbonate-derived CO2 below analytical resolution\",\"authors\":\"Miguel Bernecker , Magali Bonifacie , Philip Staudigel , Niels Meijer , Julien Siebert , Nicolas Wehr , Eiken Haussühl , Stefano M. Bernasconi , Daniel A. Petrash , Martin Dietzel , Jens Fiebig\",\"doi\":\"10.1016/j.gca.2025.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to the lack of direct methods capable of determining the abundance of isotopologues containing multiple heavy isotopes within the crystal lattice, carbonates are typically reacted with phosphoric acid to produce CO<sub>2</sub> analyte for clumped isotope analyses. This reaction is associated with fractionations of both bulk oxygen and clumped isotopes. Accurate knowledge of the effect of cation substitution on the degree of isotopic clumping in the carbonate phase (<span><math><mrow><msub><mi>Δ</mi><mn>63</mn></msub></mrow></math></span>, <span><math><mrow><msub><mi>Δ</mi><mn>64</mn></msub></mrow></math></span>) and on acid fractionation factors (<span><math><mrow><msubsup><mi>Δ</mi><mrow><mn>47</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span>, <span><math><mrow><msubsup><mi>Δ</mi><mrow><mn>48</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span>) is crucial for accurate temperature reconstructions based on clumped isotope measurements (<span><math><mrow><msub><mi>Δ</mi><mn>47</mn></msub></mrow></math></span>, <span><math><mrow><msub><mi>Δ</mi><mn>48</mn></msub></mrow></math></span>) of CO<sub>2</sub> extracted from various carbonate mineralogies. Previous studies have yielded contradicting results on the effect of carbonate mineralogy on both <span><math><mrow><msubsup><mi>Δ</mi><mrow><mn>47</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span> acid fractionation factors and the validity of a universal <span><math><mrow><msub><mi>Δ</mi><mn>47</mn></msub></mrow></math></span>−T relationship, and, so far, a systematic investigation of mineralogy-specific effects on <span><math><mrow><msub><mi>Δ</mi><mn>48</mn></msub></mrow></math></span> and <span><math><mrow><msubsup><mi>Δ</mi><mrow><mn>48</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span> is lacking.</div><div>In this study, we have analyzed the dual clumped isotope composition of stochastic and non-stochastic calcites, aragonites, dolomites, witherites‚ and siderites with unprecedented long-term repeatabilities (1SDs) of 8.6 and 28.1 ppm for <span><math><mrow><msub><mi>Δ</mi><mn>47</mn></msub></mrow></math></span> and <span><math><mrow><msub><mi>Δ</mi><mn>48</mn></msub></mrow></math></span>, respectively. In order to facilitate complete acid digestion of dolomite and siderite in a reasonable timeframe, an acid digestion temperature of 110 °C was used for these minerals instead of the 90 °C applied to calcite, aragonite and witherite. A set of calcite samples was reacted at both temperatures to determine the calcite-specific difference in acid digestion-related fractionation factors between 90 and 110 °C, yielding <span><math><mrow><msubsup><mi>Δ</mi><mrow><mn>47</mn><mo>,</mo><mn>110</mn><mo>-</mo><msup><mn>90</mn><mo>°</mo></msup><mi>C</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span> = -0.0147 ± 0.002 % and <span><math><mrow><msubsup><mi>Δ</mi><mrow><mn>48</mn><mo>,</mo><mn>110</mn><mo>-</mo><msup><mn>90</mn><mo>°</mo></msup><mi>C</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span> = -0.0148 ± 0.006 ‰ (2SEs, n = 8). After projecting <span><math><mrow><msub><mi>Δ</mi><mn>47</mn></msub></mrow></math></span> and <span><math><mrow><msub><mi>Δ</mi><mn>48</mn></msub></mrow></math></span> results from stochastic dolomite and siderite to the carbon dioxide equilibrium scale (CDES90) using the calcite-specific <span><math><mrow><msubsup><mi>Δ</mi><mrow><mi>i</mi><mo>,</mo><mn>110</mn><mo>-</mo><msup><mn>90</mn><mo>°</mo></msup><mi>C</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span>, calcite, aragonite, dolomite, witherite and siderite exhibit statistically indistinguishable <span><math><mrow><msub><mi>Δ</mi><mrow><mn>47</mn><mo>,</mo><mi>C</mi><mi>D</mi><mi>E</mi><mi>S</mi><mn>90</mn></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mi>Δ</mi><mrow><mn>48</mn><mo>,</mo><mi>C</mi><mi>D</mi><mi>E</mi><mi>S</mi><mn>90</mn></mrow></msub></mrow></math></span> values, with weighted averages of 0.1850 ± 0.0042 ‰ and 0.1255 ± 0.0130 ‰ (weighted 2SEs, n = 15), respectively. In addition, <span><math><mrow><msub><mi>Δ</mi><mrow><mn>47</mn><mo>,</mo><mi>C</mi><mi>D</mi><mi>E</mi><mi>S</mi><mn>90</mn></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mi>Δ</mi><mrow><mn>48</mn><mo>,</mo><mi>C</mi><mi>D</mi><mi>E</mi><mi>S</mi><mn>90</mn></mrow></msub></mrow></math></span> values of non-stochastic aragonites (n = 2), (proto-)dolomites (n = 2) and witherite (n = 1) correspond to calcite equilibrium values predicted by their independently known formation temperatures (<span><span>Fiebig et al., 2024</span></span>). Natural dolomites and siderites of unknown formation temperature are also indistinguishable from the calcite equilibrium line. Overall, these results imply that calcite, aragonite, dolomite and witherite share indistinguishable <span><math><mrow><msubsup><mi>Δ</mi><mrow><mn>47</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span>, <span><math><mrow><msubsup><mi>Δ</mi><mrow><mn>48</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span> and <span><math><mrow><msub><mi>Δ</mi><mn>63</mn></msub></mrow></math></span>−<span><math><mrow><msub><mi>Δ</mi><mn>64</mn></msub></mrow></math></span>−T relationships. As a consequence, the calcite-specific equilibrium <span><math><mrow><msub><mi>Δ</mi><mrow><mn>47</mn><mo>,</mo><mi>C</mi><mi>D</mi><mi>E</mi><mi>S</mi><mn>90</mn></mrow></msub></mrow></math></span>−<span><math><mrow><msub><mi>Δ</mi><mrow><mn>48</mn><mo>,</mo><mi>C</mi><mi>D</mi><mi>E</mi><mi>S</mi><mn>90</mn></mrow></msub></mrow></math></span>−T relationships of <span><span>Fiebig et al. (2024)</span></span> can be reliably applied to aragonite, dolomite, and witherite. More precipitation experiments under controlled conditions are necessary to clarify with more confidence if these relationships are also valid for siderite.</div></div>\",\"PeriodicalId\":327,\"journal\":{\"name\":\"Geochimica et Cosmochimica Acta\",\"volume\":\"401 \",\"pages\":\"Pages 89-103\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochimica et Cosmochimica Acta\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016703725003072\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016703725003072","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
由于缺乏能够确定晶格内含有多种重同位素的同位素丰度的直接方法,碳酸盐岩通常与磷酸反应产生CO2分析物,用于团块同位素分析。这个反应与大块氧和团块同位素的分馏有关。准确了解阳离子取代对碳酸盐相中同位素团块程度(Δ63, Δ64)和酸分馏因子(Δ47∗,Δ48∗)的影响,对于基于从各种碳酸盐矿物学中提取的CO2的团块同位素测量(Δ47, Δ48)精确重建温度至关重要。先前的研究在碳酸盐矿物学对Δ47 *酸分选因子的影响和普遍的Δ47−T关系的有效性方面产生了相互矛盾的结果,并且到目前为止,缺乏矿物学对Δ48和Δ48 *的特定影响的系统调查。在这项研究中,我们分析了随机和非随机方解石、文石、白云石、辉石和菱铁矿的双团块同位素组成,其长期重复性(1SDs)分别为Δ47和Δ48的8.6和28.1 ppm。为了使白云石和菱铁矿在合理的时间内完成酸溶,将方解石、文石和辉石的酸溶温度设置为110℃,而不是90℃。一组方解石样品在这两种温度下反应,以确定方解石在90和110℃之间酸消化相关分馏因子的特异性差异,得到Δ47,110-90°C∗= -0.0147±0.002%和Δ48,110-90°C∗= -0.0148±0.006‰(2SEs, n = 8)。将随机白云石和菱铁矿的Δ47和Δ48结果用方解石特定的Δi,110-90°C∗投影到二氧化碳平衡尺度(CDES90)上,方解石,文石,白云石,辉石和菱铁矿表现出统计学上不可区分的Δ47,CDES90和Δ48,CDES90值,加权平均值分别为0.1850±0.0042‰和0.1255±0.0130‰(加权2SEs, n = 15)。此外,非随机文石(n = 2)、(原)白云石(n = 2)和辉石(n = 1)的CDES90值Δ47、CDES90值Δ48对应的方解石平衡值由其独立已知的地层温度预测(Fiebig et al., 2024)。形成温度未知的天然白云石和菱铁矿也与方解石平衡线难以区分。总的来说,这些结果表明方解石,文石,白云石和辉石具有不可区分的Δ47∗,Δ48∗和Δ63−Δ64−T关系。因此,Fiebig等人(2024)的方解石特定平衡Δ47、CDES90−Δ48、CDES90−T关系可以可靠地应用于文石、白云石和辉石。需要在控制条件下进行更多的沉淀实验,以更有信心地澄清这些关系是否也适用于菱铁矿。
Effects of mineralogy on Δ47 and Δ48 of carbonate-derived CO2 below analytical resolution
Due to the lack of direct methods capable of determining the abundance of isotopologues containing multiple heavy isotopes within the crystal lattice, carbonates are typically reacted with phosphoric acid to produce CO2 analyte for clumped isotope analyses. This reaction is associated with fractionations of both bulk oxygen and clumped isotopes. Accurate knowledge of the effect of cation substitution on the degree of isotopic clumping in the carbonate phase (, ) and on acid fractionation factors (, ) is crucial for accurate temperature reconstructions based on clumped isotope measurements (, ) of CO2 extracted from various carbonate mineralogies. Previous studies have yielded contradicting results on the effect of carbonate mineralogy on both acid fractionation factors and the validity of a universal −T relationship, and, so far, a systematic investigation of mineralogy-specific effects on and is lacking.
In this study, we have analyzed the dual clumped isotope composition of stochastic and non-stochastic calcites, aragonites, dolomites, witherites‚ and siderites with unprecedented long-term repeatabilities (1SDs) of 8.6 and 28.1 ppm for and , respectively. In order to facilitate complete acid digestion of dolomite and siderite in a reasonable timeframe, an acid digestion temperature of 110 °C was used for these minerals instead of the 90 °C applied to calcite, aragonite and witherite. A set of calcite samples was reacted at both temperatures to determine the calcite-specific difference in acid digestion-related fractionation factors between 90 and 110 °C, yielding = -0.0147 ± 0.002 % and = -0.0148 ± 0.006 ‰ (2SEs, n = 8). After projecting and results from stochastic dolomite and siderite to the carbon dioxide equilibrium scale (CDES90) using the calcite-specific , calcite, aragonite, dolomite, witherite and siderite exhibit statistically indistinguishable and values, with weighted averages of 0.1850 ± 0.0042 ‰ and 0.1255 ± 0.0130 ‰ (weighted 2SEs, n = 15), respectively. In addition, and values of non-stochastic aragonites (n = 2), (proto-)dolomites (n = 2) and witherite (n = 1) correspond to calcite equilibrium values predicted by their independently known formation temperatures (Fiebig et al., 2024). Natural dolomites and siderites of unknown formation temperature are also indistinguishable from the calcite equilibrium line. Overall, these results imply that calcite, aragonite, dolomite and witherite share indistinguishable , and −−T relationships. As a consequence, the calcite-specific equilibrium −−T relationships of Fiebig et al. (2024) can be reliably applied to aragonite, dolomite, and witherite. More precipitation experiments under controlled conditions are necessary to clarify with more confidence if these relationships are also valid for siderite.
期刊介绍:
Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes:
1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids
2). Igneous and metamorphic petrology
3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth
4). Organic geochemistry
5). Isotope geochemistry
6). Meteoritics and meteorite impacts
7). Lunar science; and
8). Planetary geochemistry.