二维InxGa1-xN的应变工程电子和光学性质:第一性原理研究

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kun Li , Hai-Hong Wu , Yuan-Zheng Lu , Chao Zhang , Wen Yang
{"title":"二维InxGa1-xN的应变工程电子和光学性质:第一性原理研究","authors":"Kun Li ,&nbsp;Hai-Hong Wu ,&nbsp;Yuan-Zheng Lu ,&nbsp;Chao Zhang ,&nbsp;Wen Yang","doi":"10.1016/j.commatsci.2025.114047","DOIUrl":null,"url":null,"abstract":"<div><div>Two-dimensional (2D) materials, with their atomic-level thickness and unique properties, have gained significant attention for potential applications in future nanodevices. In this study, the mechanical, electronic, and optical properties of 2D In<sub>x</sub>Ga<sub>1-x</sub>N materials are systematically investigated using first-principles calculations. The results reveal that the Young’s modulus of these materials decreases from 109.66 N m<sup>−1</sup> to 66.70 N m<sup>−1</sup> with increasing In content, indicating reduced stiffness, while the deformation ranges up to 18 %. Additionally, the bandgap of 2D In<sub>x</sub>Ga<sub>1-x</sub>N materials can be finely tuned from 2.28 eV to 0.23 eV by varying the In composition and applying uniaxial strain. This tunability offers the potential to optimize the materials for different electronic applications. Optical absorption analysis demonstrates a pronounced anisotropic response to uniaxial strain, particularly in the UV and visible light regions, suggesting that strain engineering can be used to tailor light absorption for specific optoelectronic functions. These findings highlight the versatility of 2D In<sub>x</sub>Ga<sub>1-x</sub>N materials, showing great promise for next-generation flexible electronics, photovoltaics, and photodetectors, where both mechanical flexibility and optical performance are crucial to these materials.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"258 ","pages":"Article 114047"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain-Engineered electronic and optical properties of 2D InxGa1-xN: A first-principles study\",\"authors\":\"Kun Li ,&nbsp;Hai-Hong Wu ,&nbsp;Yuan-Zheng Lu ,&nbsp;Chao Zhang ,&nbsp;Wen Yang\",\"doi\":\"10.1016/j.commatsci.2025.114047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Two-dimensional (2D) materials, with their atomic-level thickness and unique properties, have gained significant attention for potential applications in future nanodevices. In this study, the mechanical, electronic, and optical properties of 2D In<sub>x</sub>Ga<sub>1-x</sub>N materials are systematically investigated using first-principles calculations. The results reveal that the Young’s modulus of these materials decreases from 109.66 N m<sup>−1</sup> to 66.70 N m<sup>−1</sup> with increasing In content, indicating reduced stiffness, while the deformation ranges up to 18 %. Additionally, the bandgap of 2D In<sub>x</sub>Ga<sub>1-x</sub>N materials can be finely tuned from 2.28 eV to 0.23 eV by varying the In composition and applying uniaxial strain. This tunability offers the potential to optimize the materials for different electronic applications. Optical absorption analysis demonstrates a pronounced anisotropic response to uniaxial strain, particularly in the UV and visible light regions, suggesting that strain engineering can be used to tailor light absorption for specific optoelectronic functions. These findings highlight the versatility of 2D In<sub>x</sub>Ga<sub>1-x</sub>N materials, showing great promise for next-generation flexible electronics, photovoltaics, and photodetectors, where both mechanical flexibility and optical performance are crucial to these materials.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"258 \",\"pages\":\"Article 114047\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025625003908\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625003908","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)材料以其原子级厚度和独特的性能,在未来的纳米器件中具有潜在的应用前景。在这项研究中,使用第一性原理计算系统地研究了二维InxGa1-xN材料的机械,电子和光学性质。结果表明,随着In含量的增加,材料的杨氏模量从109.66 N m−1下降到66.70 N m−1,表明材料的刚度降低,而变形幅度高达18%。此外,通过改变In成分和施加单轴应变,可以将二维InxGa1-xN材料的带隙从2.28 eV微调到0.23 eV。这种可调性为优化不同电子应用的材料提供了潜力。光学吸收分析表明,单轴应变具有明显的各向异性响应,特别是在紫外和可见光区域,这表明应变工程可用于定制特定光电功能的光吸收。这些发现突出了2D InxGa1-xN材料的多功能性,显示了下一代柔性电子,光伏和光电探测器的巨大前景,其中机械灵活性和光学性能对这些材料至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strain-Engineered electronic and optical properties of 2D InxGa1-xN: A first-principles study
Two-dimensional (2D) materials, with their atomic-level thickness and unique properties, have gained significant attention for potential applications in future nanodevices. In this study, the mechanical, electronic, and optical properties of 2D InxGa1-xN materials are systematically investigated using first-principles calculations. The results reveal that the Young’s modulus of these materials decreases from 109.66 N m−1 to 66.70 N m−1 with increasing In content, indicating reduced stiffness, while the deformation ranges up to 18 %. Additionally, the bandgap of 2D InxGa1-xN materials can be finely tuned from 2.28 eV to 0.23 eV by varying the In composition and applying uniaxial strain. This tunability offers the potential to optimize the materials for different electronic applications. Optical absorption analysis demonstrates a pronounced anisotropic response to uniaxial strain, particularly in the UV and visible light regions, suggesting that strain engineering can be used to tailor light absorption for specific optoelectronic functions. These findings highlight the versatility of 2D InxGa1-xN materials, showing great promise for next-generation flexible electronics, photovoltaics, and photodetectors, where both mechanical flexibility and optical performance are crucial to these materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信