Yunpeng Zhang , Huixiang Zhuang , Yue Guan , Yao Li
{"title":"基于结构子空间先验的深度神经网络鲁棒贝叶斯脑提取","authors":"Yunpeng Zhang , Huixiang Zhuang , Yue Guan , Yao Li","doi":"10.1016/j.compmedimag.2025.102572","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate and robust brain extraction, or skull stripping, is essential for studying brain development, aging, and neurological disorders. However, brain images exhibit substantial data heterogeneity due to differences in contrast and geometric characteristics across various diseases, medical institutions and age groups. A fundamental challenge lies in effectively capturing the high-dimensional spatial-intensity distributions of the brain. This paper introduces a novel Bayesian brain extraction method that integrates a structural subspace-based prior, represented as a mixture-of-eigenmodes, with deep learning-based classification to achieve accurate and robust brain extraction. Specifically, we used structural subspace model to effectively capture global spatial-structural distributions of the normal brain. Leveraging this global spatial prior, a multi-resolution, position-dependent neural network is employed to effectively model the local spatial-intensity distributions. A patch-based fusion network is then used to combine these global and local spatial-intensity distributions for final brain extraction. The proposed method has been rigorously evaluated using multi-institutional datasets, including healthy scans across lifespan, images with lesions, and images affected by noise and artifacts, demonstrating superior segmentation accuracy and robustness over the state-of-the-art methods. Our proposed method holds promise for enhancing brain extraction in practical clinical applications.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"124 ","pages":"Article 102572"},"PeriodicalIF":5.4000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Bayesian brain extraction by integrating structural subspace-based spatial prior into deep neural networks\",\"authors\":\"Yunpeng Zhang , Huixiang Zhuang , Yue Guan , Yao Li\",\"doi\":\"10.1016/j.compmedimag.2025.102572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate and robust brain extraction, or skull stripping, is essential for studying brain development, aging, and neurological disorders. However, brain images exhibit substantial data heterogeneity due to differences in contrast and geometric characteristics across various diseases, medical institutions and age groups. A fundamental challenge lies in effectively capturing the high-dimensional spatial-intensity distributions of the brain. This paper introduces a novel Bayesian brain extraction method that integrates a structural subspace-based prior, represented as a mixture-of-eigenmodes, with deep learning-based classification to achieve accurate and robust brain extraction. Specifically, we used structural subspace model to effectively capture global spatial-structural distributions of the normal brain. Leveraging this global spatial prior, a multi-resolution, position-dependent neural network is employed to effectively model the local spatial-intensity distributions. A patch-based fusion network is then used to combine these global and local spatial-intensity distributions for final brain extraction. The proposed method has been rigorously evaluated using multi-institutional datasets, including healthy scans across lifespan, images with lesions, and images affected by noise and artifacts, demonstrating superior segmentation accuracy and robustness over the state-of-the-art methods. Our proposed method holds promise for enhancing brain extraction in practical clinical applications.</div></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":\"124 \",\"pages\":\"Article 102572\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611125000813\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611125000813","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Robust Bayesian brain extraction by integrating structural subspace-based spatial prior into deep neural networks
Accurate and robust brain extraction, or skull stripping, is essential for studying brain development, aging, and neurological disorders. However, brain images exhibit substantial data heterogeneity due to differences in contrast and geometric characteristics across various diseases, medical institutions and age groups. A fundamental challenge lies in effectively capturing the high-dimensional spatial-intensity distributions of the brain. This paper introduces a novel Bayesian brain extraction method that integrates a structural subspace-based prior, represented as a mixture-of-eigenmodes, with deep learning-based classification to achieve accurate and robust brain extraction. Specifically, we used structural subspace model to effectively capture global spatial-structural distributions of the normal brain. Leveraging this global spatial prior, a multi-resolution, position-dependent neural network is employed to effectively model the local spatial-intensity distributions. A patch-based fusion network is then used to combine these global and local spatial-intensity distributions for final brain extraction. The proposed method has been rigorously evaluated using multi-institutional datasets, including healthy scans across lifespan, images with lesions, and images affected by noise and artifacts, demonstrating superior segmentation accuracy and robustness over the state-of-the-art methods. Our proposed method holds promise for enhancing brain extraction in practical clinical applications.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.