基于大语言模型的竞价行为Agent与市场情绪Agent辅助电价预测

Xin Lu;Jing Qiu;Yi Yang;Chenxi Zhang;Jiafeng Lin;Sihai An
{"title":"基于大语言模型的竞价行为Agent与市场情绪Agent辅助电价预测","authors":"Xin Lu;Jing Qiu;Yi Yang;Chenxi Zhang;Jiafeng Lin;Sihai An","doi":"10.1109/TEMPR.2024.3518624","DOIUrl":null,"url":null,"abstract":"Day-ahead electricity price prediction is crucial for market participants to make optimal trading decisions. The implementation of the five-minute settlement (5MS) process in the Australian National Electricity Market (NEM) on October 1, 2021, reduced the settlement interval from 30 minutes to 5 minutes. This change has led to more frequent adjustments in pricing, allowing for a more accurate reflection of real-time supply and demand conditions. However, this increased frequency has significantly heightened the complexity of price fluctuations in the wholesale market. Consequently, conventional machine learning and deep learning methods struggle to provide accurate predictions at this higher resolution. Since electricity prices are fundamentally determined by the supply-demand balance and the bidding behaviors of market participants, this work introduces individual participant's bidding behaviors into the prediction model. We fine-tune a pre-trained Large Language Model (LLM) to create bidding behavior agents, which forecasts day-ahead bidding behaviors. Moreover, market sentiment plays a significant role in electricity price volatility, yet it remains challenging to quantify and assess its impact. To address this, we employ a pre-trained LLM to analyze online resources, incorporating market sentiment into the price prediction model. Additionally, to enhance the accuracy of spike predictions, we improve the conditional time series generative adversarial network (CTSGAN) model by utilizing a spike confusion matrix and further strengthen the model by integrating bidding behavior and market sentiment as inputs. Case studies demonstrate that the proposed model significantly improves both electricity price and spike prediction accuracy, offering a robust tool for market participants to navigate the complexities of the modern electricity market.","PeriodicalId":100639,"journal":{"name":"IEEE Transactions on Energy Markets, Policy and Regulation","volume":"3 2","pages":"223-235"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large Language Model-Based Bidding Behavior Agent and Market Sentiment Agent-Assisted Electricity Price Prediction\",\"authors\":\"Xin Lu;Jing Qiu;Yi Yang;Chenxi Zhang;Jiafeng Lin;Sihai An\",\"doi\":\"10.1109/TEMPR.2024.3518624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Day-ahead electricity price prediction is crucial for market participants to make optimal trading decisions. The implementation of the five-minute settlement (5MS) process in the Australian National Electricity Market (NEM) on October 1, 2021, reduced the settlement interval from 30 minutes to 5 minutes. This change has led to more frequent adjustments in pricing, allowing for a more accurate reflection of real-time supply and demand conditions. However, this increased frequency has significantly heightened the complexity of price fluctuations in the wholesale market. Consequently, conventional machine learning and deep learning methods struggle to provide accurate predictions at this higher resolution. Since electricity prices are fundamentally determined by the supply-demand balance and the bidding behaviors of market participants, this work introduces individual participant's bidding behaviors into the prediction model. We fine-tune a pre-trained Large Language Model (LLM) to create bidding behavior agents, which forecasts day-ahead bidding behaviors. Moreover, market sentiment plays a significant role in electricity price volatility, yet it remains challenging to quantify and assess its impact. To address this, we employ a pre-trained LLM to analyze online resources, incorporating market sentiment into the price prediction model. Additionally, to enhance the accuracy of spike predictions, we improve the conditional time series generative adversarial network (CTSGAN) model by utilizing a spike confusion matrix and further strengthen the model by integrating bidding behavior and market sentiment as inputs. Case studies demonstrate that the proposed model significantly improves both electricity price and spike prediction accuracy, offering a robust tool for market participants to navigate the complexities of the modern electricity market.\",\"PeriodicalId\":100639,\"journal\":{\"name\":\"IEEE Transactions on Energy Markets, Policy and Regulation\",\"volume\":\"3 2\",\"pages\":\"223-235\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Energy Markets, Policy and Regulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10804210/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Energy Markets, Policy and Regulation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10804210/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

日前电价预测对于市场参与者做出最优交易决策至关重要。澳大利亚国家电力市场(NEM)于2021年10月1日实施5分钟结算(5MS)流程,将结算间隔从30分钟缩短至5分钟。这一变化导致了更频繁的定价调整,从而更准确地反映了实时供需状况。然而,这种增加的频率大大增加了批发市场价格波动的复杂性。因此,传统的机器学习和深度学习方法很难在这种更高的分辨率下提供准确的预测。由于电价从根本上是由供需平衡和市场参与者的竞价行为决定的,因此本文将个体参与者的竞价行为引入预测模型。我们对预训练的大型语言模型(LLM)进行微调,以创建投标行为代理,预测前一天的投标行为。此外,市场情绪在电价波动中起着重要作用,但量化和评估其影响仍然具有挑战性。为了解决这个问题,我们使用一个预先训练的法学硕士来分析在线资源,将市场情绪纳入价格预测模型。此外,为了提高尖峰预测的准确性,我们利用尖峰混淆矩阵改进了条件时间序列生成对抗网络(CTSGAN)模型,并通过整合竞价行为和市场情绪作为输入进一步加强了模型。案例研究表明,所提出的模型显著提高了电价和峰值预测的准确性,为市场参与者提供了一个强大的工具,以应对现代电力市场的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large Language Model-Based Bidding Behavior Agent and Market Sentiment Agent-Assisted Electricity Price Prediction
Day-ahead electricity price prediction is crucial for market participants to make optimal trading decisions. The implementation of the five-minute settlement (5MS) process in the Australian National Electricity Market (NEM) on October 1, 2021, reduced the settlement interval from 30 minutes to 5 minutes. This change has led to more frequent adjustments in pricing, allowing for a more accurate reflection of real-time supply and demand conditions. However, this increased frequency has significantly heightened the complexity of price fluctuations in the wholesale market. Consequently, conventional machine learning and deep learning methods struggle to provide accurate predictions at this higher resolution. Since electricity prices are fundamentally determined by the supply-demand balance and the bidding behaviors of market participants, this work introduces individual participant's bidding behaviors into the prediction model. We fine-tune a pre-trained Large Language Model (LLM) to create bidding behavior agents, which forecasts day-ahead bidding behaviors. Moreover, market sentiment plays a significant role in electricity price volatility, yet it remains challenging to quantify and assess its impact. To address this, we employ a pre-trained LLM to analyze online resources, incorporating market sentiment into the price prediction model. Additionally, to enhance the accuracy of spike predictions, we improve the conditional time series generative adversarial network (CTSGAN) model by utilizing a spike confusion matrix and further strengthen the model by integrating bidding behavior and market sentiment as inputs. Case studies demonstrate that the proposed model significantly improves both electricity price and spike prediction accuracy, offering a robust tool for market participants to navigate the complexities of the modern electricity market.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信